Heavy and Overweight Vehicle Brake Testing: Combination Five-Axle TractorFlatbed Final Report

FOREWORD

The Federal Motor Carrier Safety Administration (FMCSA), in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross combination vehicle weight on braking performance. While the Federal Motor Carrier Safety Regulations (FMCSRs) limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways for given weight limits, the HOVBT program seeks to provide relevant stopping distance data to those considering the effect of increased cargo loads for various levels of brake defects.

This document serves as the final report for five-axle commercial motor vehicle (CMV) research associated with this program, previously published in October 2013 as the Oak Ridge National Laboratory publication Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Stopping tests, constant-brake-application-pressure tests, and performance-based brake tests were performed on a five-axle CMV following a complete brake rebuild. Tests were performed for various brake conditions, weights, and initial speeds. Analysis of the stopping test data showed the stopping distance to increase with load in most cases (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and stopping distance. This research also provided valuable information regarding areas in which future research should focus.

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDOT) in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The contents of this report reflect the views of the contractor, who is responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the USDOT. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers named herein. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of this report.

QUALITY ASSURANCE STATEMENT

FMCSA provides high-quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FMCSA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

Technical Report Documentation Page

1. Report No. FMCSA-PSV-16-009	2. Government Accession No.
4. Title and Subtitle Heavy and Overweight Vehicle Brake Testing: Combination Five-Axle Tractor-Flatbed Final Report	5. Report Date May 2017
	6. Performing Organization Code
7. Author(s) Lascurain, Mary Beth; Capps, Gary; Franzese, Oscar	8. Performing Organization Report No. ORNL/TM-2012/606
9. Performing Organization Name and Address Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831	10. Work Unit No. (TRAIS)
12. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Motor Carrier Safety Administration Office of Analysis, Research, and Technology 1200 New Jersey Ave. SE Washington, DC 20590	DTMC75-11-X-00040
15. Type of Report and Period Covered	
Sinal Report, August 2016	

15. Supplementary Notes

Contracting Officer's Representative: Luke W. Loy
16. Abstract

The Federal Motor Carrier Safety Administration (FMCSA), in coordination with the Federal Highway Administration (FHWA), sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Federal Motor Vehicle Safety Standards (FMVSS) 121 reduced stopping distance requirements required by the National Highway Transportation Safety Administration (NHTSA) in the July 27, 2009 final rule. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed at varying brake application pressures from low and moderate initial speeds. These tests were conducted for various brake conditions (fully functioning or with select brakes disabled) at various gross combination vehicle weights ranging from moderately loaded to significantly overloaded conditions. In addition to the stopping tests, performance-based brake tests (PBBTs) were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load in most cases (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and stopping distance, and an algorithm was developed to normalize stopping data for weight and initial speed.

17. Key Words
brakes, CMV, commercial motor vehicle, heavy vehicle,
heavy truck, overweight, reduced stopping distance,
stopping distance

18. Distribution Statement No restrictions			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 79	22. Price

SI* (MODERN METRIC) CONVERSION FACTORS

* SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003, Section 508-accessible version September 2009.)

TABLE OF CONTENTS

EXECUTIVE SUMMARY IX

1. INTRODUCTION 1
1.1 BACKGROUND 1
1.2 OVERVIEW OF HEAVY AND OVERWEIGHT VEHICLE BRAKE TESTING PROGRAM 1
1.3 PURPOSE OF TRACTOR-FLATBED TESTING 1
2. TEST SETUP 3
2.1 DESCRIPTION OF TEST VEHICLE 3
2.2 BRAKE REBUILD AND INSTRUMENTATION 5
2.3 TYPES OF TESTS 6
2.3.1 Service Brake Stops 6
2.3.2 Constant-Pressure Stops 6
2.3.3 Performance-Based Brake Tests 6
2.3.3 Other Measurements 6
3. OVERVIEW OF COLLECTED DATA 7
3.1 DESCRIPTION OF DATA 7
3.2 CALCULATION OF KEY PARAMETERS FOR EACH STOP 9
3.3 ADDITIONAL DATA COMMENTS 10
4. ANALYSIS OF SERVICE BRAKE STOP DATA 11
4.1 TRACTOR TESTING WITH A CONTROL TRAILER 11
4.2 OVERVIEW OF RESULTS FOR 20-MILES PER HOUR SERVICE BRAKE STOPS 11
4.3 OVERVIEW OF RESULTS FOR 60-MILES PER HOUR SERVICE BRAKE STOPS 12
4.4 OBSERVED TRENDS IN SERVICE BRAKE STOP DATA 13
4.5 ANALYSIS OF TIRE LOAD CAPACITY 14
5. ANALYSIS OF PERFORMANCE-BASED BRAKE TESTER DATA 15
5.1 OVERVIEW OF RESULTS 15
5.2 ESTIMATES OF DISABLED-BRAKE RESULTS 15
5.3 EFFECT OF LOAD AND DEFECT POSITION ON BRAKE EFFICIENCY 16
5.4 COMPARISON OF SCALE-AND PERFORMANC-BASED BRAKE TESTER- REPORTED WEIGHTS 17
6. ANALYSIS OF CONSTANT-PRESSURE STOP DATA 19
6.1 BACKGROUND 19
6.2 GENERAL OBSERVATIONS FROM TEST DATA 19
6.2.1 Linearity 21
6.2.2 Effect of Speed 23
6.2.3 Effect of Loading 25
6.2.4 Effect of Defect Position 27
6.3 NORMALIZATION AND OBSERVATIONS 27
6.3.1 Normalizing for Speed (to $20 \mathrm{mi} / \mathrm{h}$) 28
6.3.2 Normalizing for Weight (to $60,000 \mathrm{lb}$) 29
6.3.3 Results of Data Normalization 30
6.4 SUMMARY OF NOVEL RESEARCH AND PROGRESS 31
7. LESSONS LEARNED 33
7.1 PROCUREMENT PROCESSES 33
7.2 CONSIDERATION OF TIRE LOAD CAPACITY 33
7.3 TIMING OF ANALYSIS COMPONENT 33
8. FUTURE DIRECTIONS 35
REFERENCES 67
LIST OF APPENDICES
APPENDIX A: SUMMARY OF STOPPING TEST RESULTS 37
APPENDIX B: BRAKE STROKE MEASUREMENT LOG 51
APPENDIX C: PERFORMANCE-BASED BRAKE TESTER RESULTS 61

LIST OF FIGURES

Figure 1. Photograph. Test vehicle in 80,000-lb GVW configuration 5
Figure 2. Chart. Time history plot of data from a constant-pressure stop. 8
Figure 3. Chart. Comparison of stopping distances for $20-\mathrm{mi} / \mathrm{h}$ service brake stops. 12
Figure 4. Chart. Comparison of stopping distances for $60-\mathrm{mi} / \mathrm{h}$ service brake stops 13
Figure 5. Chart. Comparison of predicted and actual PBBT scores for disabled brake scenarios. 16Figure 6. Chart. PBBT scores by brake condition and loading.17
Figure 7. Chart. Comparison of PBBT and scale-reported GVW. 18
Figure 8. Chart. Pressure-deceleration curves for $60,000 \mathrm{lb}$ GVW load. 20
Figure 9. Chart. Pressure-deceleration curves for $80,000-\mathrm{lb}$ GVW load 21
Figure 10. Chart. Pressure-decelaration curves for $60,000-\mathrm{lb}$ GVW loading condition (15-45 psi). 22
Figure 11. Chart. Pressure-deceleration curves for 80,000-lb GVW loading condition (15-45 psi). 23
Figure 12. Chart. Comparison of sample speed profiles for $20-$ and $60-\mathrm{mi} / \mathrm{h}$ constant-pressure stops 24
Figure 13. Chart. Comparison of sample deceleration profile for $20-$ and $60-\mathrm{mi} / \mathrm{h}$ constant- pressure stops. 25
Figure 14. Chart. Pressure-deceleration curves by load and brake condition for $20 \mathrm{mi} / \mathrm{h}$ 26
Figure 15. Chart. Pressure-deceleration curves by load and brake condition for $60 \mathrm{mi} / \mathrm{h}$. 27
Figure 16. Chart. Original pressure-deceleration data before normalization 28
Figure 17. Chart. Full-function pressure-deceleration data normalized to $20-\mathrm{mi} / \mathrm{h}$ initial speed. 29
Figure 18. Chart. Full-function pressure-deceleration data normalized to 60,000-lb GVW load. 30
Figure 19. Chart. All pressure-deceleration data following normalization. 31

LIST OF TABLES

Table 1. General tractor specifications. 3
Table 2. Tractor axle specifications. 3
Table 3. Tractor brake specifications 3
Table 4. Tractor tire specifications. 4
Table 5. General trailer specifications. 4
Table 6. Trailer axle 1 specifications. 4
Table 7. Trailer axle 2 specifications. 4
Table 8. Trailer brake specifications. 4
Table 9. Trailer tire specifications. 4
Table 10. Stopping test streaming data. 7
Table 11. Test weights (lb). 8
Table 12. PBBT service brake streaming data. 9
Table 13. Parameters calculated for each stopping test. 9
Table 14. Average corrected stopping distance for $20-\mathrm{mi} / \mathrm{h}$ service brake stops. 12
Table 15. Average corrected stopping distances for $60-\mathrm{mi} / \mathrm{h}$ service brake stops. 13
Table 16. Tire load capacity for loading conditions. 14
Table 17. PBBT scores (average) 15
Table 18. Comparison of actual and estimated PBBT scores. 16
Table 19. Summary of stopping test results. 37
Table 20. PBBT scores-fully functioning brakes, before test set. 61
Table 21. PBBT scores-fully functioning brakes, after test set. 62
Table 22. PBBT scores---disabled front five axle brakes, before test set 63
Table 23. PBBT scores—disabled front drive axle brakes, after test set. 64
Table 24. PBBT scores-disabled rear trailer axle brakes, before test set 65
Table 25. PBBT scores-disabled rear trailer axle brakes, after test set. 66

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

Acronym	Definition
ABS	anti-lock brake system
CFR	Code of Federal Regulations
CMV	commercial motor vehicle
FHWA	Federal Highway Administration
FMCSA	Federal Motor Carrier Safety Administration
FMCSR	Federal Motor Carrier Safety Regulation
$\mathrm{ft} / \mathrm{s}^{2}$	feet per second squared
FMVSS	Federal Motor Vehicle Safety Standard
GAWR	gross axle weight rating
GPS	Global Positioning System
GVW	gross vehicle weight
GVWR	gross vehicle weight rating
HOVBT	heavy and overweight vehicle brake testing
Hz	Hertz
mi / h	miles per hour
MTDC	medium truck duty cycle
NHTSA	National Highway Traffic Safety Administration
ORNL	Oak Ridge National Laboratory
PBBT	performance-based brake tester
psi	pounds per square inch
RSD	reduced stopping distance
sec	second(s)

[This page intentionally left blank.]

EXECUTIVE SUMMARY

The Federal Motor Carrier Safety Administration (FMCSA), in coordination with the Federal Highway Administration (FHWA), sponsored the heavy and overweight vehicle brake testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. The examination of the effect of brake defects on brake performance for increased vehicle weight is important because the Federal Motor Carrier Safety Regulations (FMCSRs) limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways. The HOVBT program seeks to provide relevant stopping distance data for increasing cargo loads at various levels of brake defects.

This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Federal Motor Vehicle Safety Standards (FMVSS) 121 reduced stopping distance requirements required by the National Highway Transportation Safety Administration (NHTSA) in the July 27, 2009 final rule. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 miles per hour (mi / h) with various brake application pressures (15 pounds per square inch [psi], 25 psi , 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, $97,000,106,000$, and $116,000 \mathrm{lb}$. The $80,000-\mathrm{lb}$ GVWs included both balanced and unbalanced loads (where the load on the trailer was biased to increase the load on the drive axle of the tractor). The condition of the braking system was also varied, introducing a variety of brake defects on axle and wheel end combinations by making those brakes inoperative. In addition to the stopping tests, performancebased brake tests (PBBTs) were conducted for the various loading and brake conditions.

Analysis of the stopping test data showed the stopping distance to increase with load in most cases (as expected) and also showed that more braking force was generated by the drive axle brakes, as measured in relative stopping distance length, than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and stopping distance, and an algorithm was developed to normalize stopping data for weight and initial speed.

This research also provided valuable information regarding areas in which future research should focus, including the need for further data collection to develop and test an onboard brake assessment algorithm and similar stopping distance tests of vehicles with other body types and trailer configurations.
[This page intentionally left blank.]

1. INTRODUCTION

1.1 BACKGROUND

Commercial trucks normally travel at or less than the maximum weight allowed by the Federal Highway Administration (FHWA) Bridge Formula on interstate highways. Many States allow commercial trucks to operate on State roads and highways at weights significantly greater than that allowed under the FHWA Bridge Formula. The Federal Motor Carrier Safety Administration (FMCSA) and FHWA are interested in gathering real-world brake performance and stopping distance test data on vehicles representative of current in-use commercial motor vehicles (CMVs) that are operating at Bridge Formula weights, weights that are grandfathered under State commercial truck weight provisions on non-interstate highways, and permitted weights.

1.2 OVERVIEW OF HEAVY AND OVERWEIGHT VEHICLE BRAKE TESTING PROGRAM

The heavy and overweight vehicle brake testing (HOVBT) program was designed to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations (FMCSRs) limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer configuration.

1.3 PURPOSE OF TRACTOR-FLATBED TESTING

The researcher gathered the required stopping distance data via subcontract to Link Commercial Vehicle Testing (East Liberty, OH) and analyzed the data to provide background information regarding the braking capability of air-braked commercial combination vehicles operating at maximum weight allowed by the FHWA Bridge Formula and in heavy weight conditions during various levels of brake performance. This testing was conducted on a vehicle with larger tractor brakes meeting the Federal Motor Vehicle Safety Standards (FMVSS) 121 reduced stopping distance requirements required by the National Highway Transportation Safety Administration (NHTSA) in the July 27, 2009 final rule. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research.
[This page intentionally left blank.]

2. TEST SETUP

This section provides information regarding the test vehicle and various tests performed as part of the HOVBT effort.

2.1 DESCRIPTION OF TEST VEHICLE

The test vehicle was a 2013 model year Volvo VNL series tractor with a 48-foot utility flatbed trailer. The use of the flatbed allowed for more efficient change of test loads than would be available for a box-type trailer. Because all tests involving vehicle movement were performed along a straight-line path, the trailer type was not expected to be a significant factor in braking performance. The specifications for the tractor and trailer are shown in Table 1 through Table 9, respectively. The combination tractor/trailer is shown in the 80,000-lb GVW balanced load configuration in Figure 1.

Table 1. General tractor specifications.

Manufacturer	Type	Model Number	Date of Manufacture	Vehicle Identification Number (VIN)	GVWR	No. of Axles
Volvo	$6 x 4$ Tractor	2013 VNL64T 670	January 2012	4V4NC9TH8DN567427	51,200 lb	3

Table 2. Tractor axle specifications.

Specification	Axle 1	Axle 2	Axle 3
Gross axle weight rating (GAWR) (lb)	13,200	19,000	19,000
Suspension Type	Spring	Airbag	Airbag

Table 3. Tractor brake specifications.

Specification	Axle 1	Axle 2	Axle 3
Manufacturer	Meritor	Meritor	Meritor
Type	Q + S-cam	Q + S-cam	Q + S-cam
Size	16.5×5	16.5×7	16.5×7
Lining Code	SOR 1201	SOR 2001	SOR 2001
Chamber Make/Size (in)	MGM 24L3	MGM 3030L3	MGM T30L3
Slack Make/Size	Meritor 5.5	Meritor 5.5	Meritor 5.5
Rotor or Drum Make/Part \#	Gunite 3772x	Gunite 3600A	Gunite 3600A
Antilock Braking System (ABS)	Bendix 6S4M	Bendix 6S4M	Bendix 6S4M

Table 4. Tractor tire specifications.

Specification	Axle 1	Axle 2	Axle 3
Manufacturer	Bridgestone	Bridgestone	Bridgestone
Tread Name	R280	M726EL	M726EL
Size	$295 / 75 R 22.5$	$295 / 75 \mathrm{R} 22.5$	$295 / 75 \mathrm{R} 22.5$
Load Range	"H"	"G"	"G"
Pressure	120 psi	110 psi	110 psi
Max Load per Tire (Config.)	$7,160 \mathrm{lb}$ (single)	$5,675 \mathrm{lb}$ (dual)	$5,675 \mathrm{lb}$ (dual)

Table 5. General trailer specifications.

Make/Model	GVWR	Date of Manufacture	Wheelbase	VIN	Suspension
Utility Trailer 48' Flatbed	$80,000 \mathrm{lb}$	August 2007	$50 "$	1UY FS2454 8A4536 02 FS2CHA	Spring

Table 6. Trailer axle 1 specifications.

Make/Model	Serial Number	GAWR
Meritor	FRK00335318 PN:TN4671L4516	$20,000 \mathrm{lb}$

Table 7. Trailer axle 2 specifications.

Make/Model	Serial Number	GAWR
Meritor	PN:TN4671L4516	$20,000 \mathrm{lb}$

Table 8. Trailer brake specifications.

Make/ Model	Type/Size	Chambers Make/Size	Slacks Make/Size	Lining Edge Code	(Drum- Rotor) Number/Size	ABS Manufacturer
Meritor	S-cam 16.5x7	Haldex T3030	Haldex ASA $5.5 "$	MA210 FF (4707)	Meritor B5123207002	Meritor B5123207002

Table 9. Trailer tire specifications.

Make/Model	Size	Static Loaded Radius	Pressure	Max Load per Tire
Bridgestone R280	295/75R22.5 (Load Range H)	$19.1^{\prime \prime}$	120 psi	6610 lb (dual)

Figure 1. Photograph. Test vehicle in 80,000-lb GVW configuration.
The test tractor was outfitted with the larger front brakes, complying with the reduced stopping distance (RSD) requirements for three-axle tractors with a gross vehicle weight rating (GVWR) of $59,600 \mathrm{lb}$ or less, manufactured on or after August 1, 2011. The braking capacity of this test vehicle should be representative of those truck tractors that have been manufactured to comply with the RSD requirement.

2.2 BRAKE REBUILD AND INSTRUMENTATION

In preparation for testing, a complete foundation brake rebuild was performed. Linings, drum, anchor pins, anchor pin bushings, brake shoe rollers, and return springs were replaced. Other foundation brake components were found to be in acceptable condition and were not replaced. The tires on the test vehicle were also replaced as the originals showed excessive wear. Prior to testing, a 500-stop burnish was performed on the new brake system in accordance with the FMVSS-121 procedure.

The process of rebuilding and burnishing ensured the effects of loading, brake condition, and brake application pressure on brake performance examined in this study were not compounded by performance degradation introduced by any braking system components that were worn, faulty, or not properly broken in.

In preparation of the various tests performed as part of this research, the test vehicle was instrumented with sensors to collect speed, brake application pressure, and related data such as tire temperature. A complete list of all the signals collected appears in Section 3.1. In addition, a pressure regulator was installed near the treadle valve to allow the operator precise brake application pressure to the primary and secondary pressure circuits.

2.3 TYPES OF TESTS

The following tests were performed for various brake conditions at the following approximate GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperable rather than changing adjustment-not only is this the easiest to quantify (in terms of brake degradation), but it is the worst-case scenario for a brake defect. In all test scenarios, the brakes involved in anti-lock brake system (ABS) actuation remained enabled. All stopping tests were performed along a straight-line path.

2.3.1 Service Brake Stops

Service brake stops were performed by bringing the test vehicle up to slightly greater than the target speed (20 or $60 \mathrm{mi} / \mathrm{h}$) and applying the full braking capacity of the vehicle (full treadle application without the use of a pressure regulator to limit the brake application pressure) until the vehicle came to a complete stop. The procedure followed was that specified for the stopping tests in FMVSS-121, following a straight-line path. This test was performed for all combinations of loading and brake conditions. To provide comparison data, $20-$ and $60-\mathrm{mi} / \mathrm{h}$ stops were also performed using an unbraked control trailer as specified in FMVSS-121 and loaded to bring the tractor up to GVWR.

2.3.2 Constant-Pressure Stops

Constant-pressure stops were performed by bringing the test vehicle up to slightly greater than the target speed (20 or $60 \mathrm{mi} / \mathrm{h}$) and applying the target constant pressure ($15,25,35,45$, or 55 psi) until the vehicle came to a complete stop. An in-line pressure regulator (with driver override capability, for safety) was used to apply a constant brake system pressure during the stop. These tests were performed for all brake conditions (full, disabled drive, and disabled trailer) for $60,000-\mathrm{lb}$ and $80,000-\mathrm{lb}$ GVWs (75 percent and 100 percent load capacity respectively).

2.3.3 Performance-Based Brake Tests

PBBTs were performed with a PBBT machine that met the FMCSA published performance specifications. In addition to weight and brake application force data, wheel-end air pressure information was also obtained for each axle using pressure transducers.

2.3.3 Other Measurements

Weigh tickets were also generated for each load configuration. Additionally, brake-stroke measurements were taken periodically throughout the test period. The temperature of the braking components was also monitored throughout testing to ensure the brakes did not overheat (primary lining temperatures remaining less than $200^{\circ} \mathrm{F}$).

3. OVERVIEW OF COLLECTED DATA

3.1 DESCRIPTION OF DATA

For the stopping tests, the data signals shown in Table 10 were collected at $100 \mathrm{Hertz}(\mathrm{Hz})$. The temperatures listed are for the primary linings on the indicated wheel-end. For each run, data was collected beginning 1 second (sec) prior to the application of the brakes and ending 0.5 sec after the vehicle speed decreased to $0.4 \mathrm{mi} / \mathrm{h}$.

Table 10. Stopping test streaming data.

Parameter	Units	Parameter	Units
Time	sec	Left Intermediate (Forward Drive) Wheel Speed	mi / h
Vehicle Speed	mi / h	Right Intermediate (Forward Drive) Wheel Speed	mi / h
Deceleration	$\mathrm{ft} / \mathrm{s}^{2}$	Left Rear Wheel Speed	mi / h
Primary Control Pressure	psi	Right Rear Wheel Speed	mi / h
Left Front Pressure	psi	Ambient Temperature	F
Right Front Pressure	psi	Left Front Temperature	F
Left Intermediate (Forward Drive) Pressure	psi	Right Front Temperature	F
Right Rear Pressure	psi	Left Intermediate (Forward Drive) Temperature	F
Spring Brake Pressure	psi	Right Intermediate (Forward Drive) Temperature	F
Primary Reservoir Pressure	psi	Left Rear Temperature	Right Rear Temperature

A sample plot of speed and braking data are shown in Figure 2. This plot shows speed, deceleration, and brake application pressure for one of the constant-pressure stops performed at the 60,000-lb GVW loading condition with the rear trailer brakes disabled. For this stop, the original speed was approximately $20 \mathrm{mi} / \mathrm{h}$ before the brakes were applied at 15 psi .

Figure 2. Chart. Time history plot of data from a constant-pressure stop.
Weigh tickets were obtained for each loading condition to determine the distribution of the load across the vehicle by axle group. A complete list of all test weights along with the nominal weight values used throughout this report is shown in Table 11.

Table 11. Test weights (lb).

Nominal	Abbreviation	Steer	Drives	Trailer	GVW
60,000	60 k	12,630	24,490	22,920	60,040
80,000 balanced	80 k balanced	12,810	32,640	34,590	80,040
80,000 unbalanced	80 k unbalanced	13,200	38,710	28,100	80,010
91,000	91 k	13,140	38,240	40,060	91,440
97,000	97 k	12,660	33,390	51,070	97,120
106,000	106 k	13,710	45,080	47,550	106,340
116,000	116 k	13,780	48,770	53,550	116,100

A number of signals were collected during the PBBT tests as well. The information listed in Table 12 was collected at 10 Hz for each axle during testing of the service brakes.

Table 12. PBBT service brake streaming data.

Parameter	Units
Time	sec
Brake Force Left	lb
Lock-up Left	lb
Brake Force Right	lb
Lock-up Right	lb
Weight Left	lb
Weight Right	lb
Control Pressure	psi
Chamber Pressure	psi

3.2 CALCULATION OF KEY PARAMETERS FOR EACH STOP

Link Engineering, the company which performed the tests and collected the data referenced in Section 3.1 provided several key parameters for each stopping test. These parameters are listed in Table 13. The values for each of these parameters for every stopping test performed appear in Appendix A.

Table 13. Parameters calculated for each stopping test.

Measure	Units
Stop \#	-
Target Speed	mi / h
Actual Speed	mi / h
Actual Stop Distance	ft
Corrected Stop Distance	ft
Average Primary Control Pressure	psi
Average Secondary Control Pressure	psi
Average Deceleration	$\mathrm{ft} / \mathrm{s}^{2}$
Stop Time (sec)	sec

Stopping distance was determined from a global positioning system (GPS) with an internal accelerometer that is used to correct the data points between actual measurements from GPS position. The output from this accelerometer was used by the data-acquisition system to record the actual distance from the beginning of the braking event (triggered by using a pedal switch on the brake pedal) and the end of the braking event (triggered when the vehicle speed decreased to $0.4 \mathrm{mi} / \mathrm{h}$). The stop time was determined by the time between these two triggers. Like the stopping-distance measurement, the deceleration was also measured with an accelerometer with the data being filtered to reduce the noise. Average pressures and decelerations were calculated from the data beginning 1.0 sec after the braking event is initiated until the end of the stop.

3.3 ADDITIONAL DATA COMMENTS

As indicated in Section 2.3.4, the brake stroke length was also monitored throughout the testing to ensure the automatic slack adjusters were functioning properly. While this data was not used in the analysis presented in this report, it is included in Appendix B for reference.

During the course of testing with the $97,000-\mathrm{lb}$ GVW load, a brake component failed. Following repair, tests resumed with the next loading condition in the test sequence, 106,000-lb GVW. Consequently, data for the final brake condition-disabled pair of trailer brakes-was not collected for the 97,000-lb load.

4. ANALYSIS OF SERVICE BRAKE STOP DATA

Service brake stops provide insight into the maximum brake force that can be developed, typical of an emergency situation where a driver would need to apply full brake force without regard to smooth deceleration. Decelerations determined from this test data represents the maximum possible under the tested scenario (brake condition, initial speed, and road condition), and the stopping distances similarly represent the shortest distances possible. Note that driver response time is not a factor in these tests; the deceleration and stopping distance data is calculated from initial brake application and represents an effective driver response time of 0 sec .

4.1 TRACTOR TESTING WITH A CONTROL TRAILER

The first set of stopping tests conducted were FMVSS-121-style service brake stops from 20 and $60 \mathrm{mi} / \mathrm{h}$ with an unbraked control trailer attached to the tractor with a GVW of approximately $56,000 \mathrm{lb}$. While these tests did not represent typical in-service loading events, they provided confirmation that the tractor meets the required minimum brake performance standard for new equipment. FMVSS-121 specifies that for "loaded tractors with three axles and a GVWR of $70,000 \mathrm{lb}$ or less...tested with an unbraked control trailer," the $20-\mathrm{mi} / \mathrm{h}$ stopping distance must be no more than 30 ft and the $60-\mathrm{mi} / \mathrm{h}$ stopping distance must be no more than $250 \mathrm{ft} .{ }^{1}{ }^{\text {FMVSS- }}$ 121-protocol stopping tests were performed at both 20 and $60 \mathrm{mi} / \mathrm{h}$ and were repeated for disabled brakes on a drive axle as well. The actual FMVSS-121 stopping distance (tested at 60 mi / h with fully-functioning tractor brakes) was 225 ft , less than the maximum of 250 ft specified by FMVSS-121 (RSD requirement). The $20-\mathrm{mi} / \mathrm{h}$ stopping distance was 27.7 ft , also meeting the FMVSS-121 requirement (30 ft maximum).

4.2 OVERVIEW OF RESULTS FOR 20-MILES PER HOUR SERVICE BRAKE STOPS

The average stopping distances for the $20-\mathrm{mi} / \mathrm{h}$ service brake stops are shown in Figure 3. Table 14 presents this same information in tabular form. For all of these tests, low variability was observed within the three repetitions of each brake/loading condition; thus, a single average value is sufficient to observe general trends in the data. The distances for all the regular service brake stops for all loads and brake conditions tested were under the $40-\mathrm{ft}$ limit specified in FMCSR 393.52(3).

Figure 3. Chart. Comparison of stopping distances for $\mathbf{2 0} \mathbf{- m i} / \mathbf{h}$ service brake stops.
Table 14. Average corrected stopping distance for $20-\mathrm{mi} / \mathrm{h}$ service brake stops.

Loading Condition (lb)	Stopping Distance (ft) Fully Functioning	Stopping Distance (ft) Disabled Drive	Stopping Distance (ft) Disabled Trailer
Control Trailer (56,000)	27.7	43.3	--
60,000 Load	27.7	34.0	29.3
80,000 Balanced Load	27.8	34.5	30.3
80,000 Unbalanced Load	26.8	36.7	28.8
91,000 Load	27.6	36.9	31.6
97,000 Load	29.1	37.1	--
106,000 Load	28.0	37.8	31.5
116,000 Load	29.3	35.9	32.5

4.3 OVERVIEW OF RESULTS FOR 60-MILES PER HOUR SERVICE BRAKE STOPS

The average stopping distances for the 60-mi/h service brake stops are shown Figure 4.Error! Reference source not found. For these tests as well, the variability was low within the three repetitions of each brake/loading condition.

Figure 4. Chart. Comparison of stopping distances for $\mathbf{6 0 - m i} / \mathrm{h}$ service brake stops.
Table 15. Average corrected stopping distances for $60-\mathrm{mi} / \mathrm{h}$ service brake stops.

Loading Condition (lb)	Stopping Distance (ft) Fully Functioning	Stopping Distance (ft) Disabled Drive	Stopping Distance (ft) Disabled Trailer
Control Trailer (56,000)	225.0	401.7	--
60,000 Load	228.9	299.1	229.8
80,000 Balanced Load	223.6	309.3	256.1
80,000 Unbalanced Load	222.9	320.3	246.4
91,000 Load	225.8	310.3	272.7
97,000 Load	238.8	329.0	--
106,000 Load	240.5	326.6	294.2
116,000 Load	252.4	340.7	319.5

As described previously, the control trailer testing was performed with an unbraked control trailer; thus, the service brake stops performed with the control trailer with disabled drive brakes represent a stop in which the total braking force was provided by the steer axle and one drive axle only.

4.4 OBSERVED TRENDS IN SERVICE BRAKE STOP DATA

The test data for both $20-$ and $60-\mathrm{mi} / \mathrm{h}$ stopping tests revealed a difference in brake force supplied depending on which brakes were disabled. For the test scenarios where one set of
brakes was disabled, disabling a pair of drive axle brakes resulted in a greater stopping distance (decreased braking force) than disabling a pair of trailer brakes. The relationship held true for both initial speeds and all loading conditions. Thus, for the vehicle tested, more brake force was generated by the drive axle brakes than the trailer axle brakes.

As expected, increases in load resulted in corresponding increase in stopping distance, with a few minor exceptions for unknown reasons in the $20-\mathrm{mi} / \mathrm{h}$ stopping data.

4.5 ANALYSIS OF TIRE LOAD CAPACITY

Another area of concern to policy-makers considering loading regulations includes tire capacity. For the purposes of this testing, all tire pressures were set at the manufacturer-specified capacity to accommodate the maximum load (details in Table 1 through Table 9). Tire capacities for each axle group are summarized and compared to the test loads in Table 16.

Table 16. Tire load capacity for loading conditions.

Load Condition (lb)	GVW (lb)	Steer Axle (lb) Capacity	Drive Axle Group (lb) Capacity	Trailer Axle Group (lb) Capacity
Tire Capacity	--	14,320	45,400	52,880
Control Trailer	55,860	13,340	38,020	--
		93.2%	83.7%	22,920
60,000 Load	60,040	12,630	24,490	43.3%
80,000 Balanced Load	80,040	88.2%	53.9%	34,590
		12,810	32,640	65.4%
80,000 Unbalanced Load	80,010	13,200	71.9%	28,100
		92.2%	38,710	53.1%
91,000 Load	91,440	13,140	85.3%	40,060
		91.8%	38,240	75.8%
97,000 Load	97,120	12,660	84.2%	51,070
		88.4%	33,390	96.6%
106,000 Load	13,710	73.5%	47,550	
		95.7%	45,080	89.9%
116,000 Load	13,780	99.3%	53,550	
	96.2%	48,770	$101.3 \% *$	

*Due to load positioning in these configurations, an overload condition was created for the rating of the tires available for testing. This was noted and will be addressed in future testing.

5. ANALYSIS OF PERFORMANCE-BASED BRAKE TESTER DATA

5.1 OVERVIEW OF RESULTS

The PBBT tests were performed before and after stopping tests for each loading and brake condition. Unless otherwise specified, the numbers presented are averages of the two tests performed. Results of each individual PBBT test (including wheel-end-specific values) are included in Appendix C.

The PBBT overall vehicle scores are summarized in Table 17.

Table 17. PBBT scores (average).

Load Condition (lb)	Fully Functioning	Disabled Drive	Disabled Trailer
Control (Tractor Only)	54.6%	-	-
60,000 Load	69.7%	56.5%	52.2%
80,000 Balanced Load	67.4%	55.8%	49.0%
80,000 Unbalanced Load	65.9%	53.6%	52.1%
91,000 Load	65.8%	55.4%	48.4%
97,000 Load	62.2%	51.2%	-
106,000 Load	61.9%	50.0%	45.3%
116,000 Load	58.1%	47.3%	45.0%

5.2 ESTIMATES OF DISABLED-BRAKE RESULTS

The results of the PBBT tests performed when all brakes were fully functioning were used to estimate the PBBT scores for the situations where the brakes on a particular actual were disabled. This brake efficiency estimation was determined from the total braking forces of the remaining axles divided by the PBBT-reported weights for all axles. These estimated results are compared to the actual values in Table 18 and graphed in Figure 5.

Table 18. Comparison of actual and estimated PBBT scores.

Load Condition (lb)	Fully Functioning	Actual Disabled Drive	Expected Disabled Drive	Actual Disabled Trailer	Expected Disabled Trailer
Control (Tractor Only)	54.6%	-	-	-	-
60,000 Load	69.7%	56.5%	57.0%	52.2%	54.4%
80,000 Balanced Load	67.4%	55.8%	55.1%	49.0%	50.7%
80,000 Unbalanced Load	65.9%	53.6%	51.7%	52.1%	52.0%
91,000 Load	65.8%	55.4%	53.8%	48.4%	49.0%
97,000 Load	62.2%	51.2%	53.0%	-	-
106,000 Load	61.9%	50.0%	50.9%	45.3%	47.7%
116,000 Load	58.1%	47.3%	46.6%	45.0%	45.5%

Figure 5. Chart. Comparison of predicted and actual PBBT scores for disabled brake scenarios.
As shown in Figure 5, these estimates were a fairly accurate predictor of the actual PBBT scores for these conditions, generally within 1-2 percent. The predictions for the disabled trailer brake scenario tended to be generally lower than the actual values, whereas the predictions for the disabled drive brake scenario were more evenly balanced with over- and under-estimates.

5.3 EFFECT OF LOAD AND DEFECT POSITION ON BRAKE EFFICIENCY

The average PBBT scores for each weight and loading condition are shown in Figure 6. As expected, the PBBT score decreases with increasing weight. However, unlike the stopping
distance tests, the performance was better when a set of drive axle brakes was disabled rather that a set of trailer axle brakes.

Figure 6. Chart. PBBT scores by brake condition and loading.
Actual test weights, including weight distribution by axle group, appear in Table 11.

5.4 COMPARISON OF SCALE-AND PERFORMANC-BASED BRAKE TESTERREPORTED WEIGHTS

Brake efficiency is calculated by dividing the sum of the wheel-end brake forces by the sum of the wheel-end weights. The GVW measured and used by the PBBT machine is compared to the GVW reported in the weight ticked from the scale in Figure 7. As shown in this figure, the PBBT consistently measures a total weight value approximately $5,000 \mathrm{lb}$ less than the GVW measured on the scale. This is likely because unlike the pit scale, the axles are weighed individually and the weighing surface is not level with respect to the length of the vehicle.

Figure 7. Chart. Comparison of PBBT and scale-reported GVW.

6. ANALYSIS OF CONSTANT-PRESSURE STOP DATA

6.1 BACKGROUND

Both North American Standard Level-1 inspections and drivers' pre-trip inspections include a requirement to inspect the vehicle's braking system visually. Because they are visual methods, they have limited ability to determine brake performance. Although the PBBT provides a quantitative indicator of vehicle braking ability, it requires access to specialized equipment. This section describes an onboard system that will provide a real-time brake indicator based on dynamic braking data collected on board the vehicle. Such a system could be used by drivers and maintenance personnel to monitor their vehicles’ braking systems, supporting preventative maintenance and providing notification of equipment problems. The system could also provide input to a number of other systems such as the Wireless Roadside Inspection system, providing advisory data to enforcement and fleet personnel regarding a CMV's brake system.

A cursory analysis of stopping test data for over-the-road CMVs collected 2008-09² has indicated that the actual pressure-deceleration relationship is linear from the crack pressure (typically around 10 psi) up until about 60 psi . The higher-pressure region (about 60 psi up to the maximum, about 100-110 psi), is highly nonlinear. Stopping tests such as those in accordance with the FMVSS-121 guidelines or FMCSR 393.5(a)(3) provide stopping distance (typically expressed in feet, and the typical PBBT provides brake efficiency (ratio of total braking force to GVW, equivalent to deceleration in g's). However, both of these metrics are based on tests conducted in the higher, nonlinear pressure region, and are thus not well correlated to typical day-to-day braking events performed at lower brake application pressures (shown in the Medium Truck Duty Cycle research ${ }^{3}$ to generally be less than 30 psi).

The researcher is seeking to develop a system which will determine, on a real-time basis from inservice activity, the condition of a CMV's braking system by monitoring deceleration as a function of brake application pressure. The algorithm will ultimately make use of pressure data from a brake application pressure sensor located at the treadle valve, speed data from either the data bus native to the vehicle (J1939 or J1708/J1587) or an installed GPS (may be present as part of a telematics device), weight data from an on-board self-weighing system (in this particular research substituted with weigh ticket data), and a telematics device where processing/analysis functions will reside. The system will use currently-available, commercial, off-the-shelf technology, and the algorithm will make use of trends in the CMVs pressure-deceleration curves to identify degradations in brake performance.

6.2 GENERAL OBSERVATIONS FROM TEST DATA

Constant-pressure stopping tests were performed by bringing the test vehicle up to a certain speed and applying a constant primary control pressure (using a pressure regulator) until the vehicle came to a complete stop. Speed and brake application pressure data were collected and used to determine average deceleration, normalized stopping distance, elapsed time, and other summary information for each test run. Constant-pressure stops were performed with 60,000-lb
and $80,000-\mathrm{lb}$ loads; at $15-\mathrm{psi}$, $25-\mathrm{psi}, 35-\mathrm{psi}, 45-\mathrm{psi}$, and $55-\mathrm{psi}$ brake application pressures; and from $20-\mathrm{mi} / \mathrm{h}$ and $60-\mathrm{mi} / \mathrm{h}$ starting speeds. Two runs were performed for each test configuration.

Deceleration data for each constant-pressure test is shown as a function of primary brake control pressure in Figure 8 (60,000-lb load) and Figure 9 (80,000-lb load).

Figure 8. Chart. Pressure-deceleration curves for $\mathbf{6 0 , 0 0 0} \mathbf{l b}$ GVW load.

Figure 9. Chart. Pressure-deceleration curves for 80,000-lb GVW load.

6.2.1 Linearity

Previous constant pressure stopping tests only went up to about $30 \mathrm{mi} / \mathrm{h}$, and data appeared very linear (first-order polynomial). However, with the addition of the higher pressures in this test (up to 55 psi), the fit is better approximated by a second-order polynomial, indicating that the linear pressure region terminates around 50 psi (for the test vehicle). With the omission of the highest test pressure (55 psi), however, the remaining data ($15,25,35$, and 45 psi) is well represented (correlation of more than 95 percent) by a linear fit for each of the 12 -speed/load/brake configurations as shown in Figure 10 and Figure 11.

Figure 10. Chart. Pressure-decelaration curves for 60,000-lb GVW loading condition (15-45 psi).

Figure 11. Chart. Pressure-deceleration curves for 80,000-lb GVW loading condition (15-45 psi).
An implication for future testing is that the linear model for the pressure-deceleration relationship should only be based on and used for brake application pressures less than approximately 50 psi .

6.2.2 Effect of Speed

One item of interest from the initial exploratory analysis was the effect of initial speed (20 vs. 60 mi / h) on deceleration. This was not seen in previous research, ${ }^{4}$ where only 20 - and $30-\mathrm{mi} / \mathrm{h}$ tests were conducted. For equivalent loading, braking condition, and brake application pressure, the tests conducted from higher speeds had lower average deceleration. For the most recent analysis, speed and deceleration plots (Figure 12 and Figure 13 respectively) were generated to compare
the stopping data for both starting speeds in the below-20-mi/h region. (Here, the data is aligned at the $19-\mathrm{mi} / \mathrm{h}$ point with braking events marked with x's. These graphs reveal that the difference in deceleration is also present in the lower-speed region of the data, not simply a result of unexpectedly low deceleration in the 20 -to- $60-\mathrm{mi} / \mathrm{h}$ region.

Figure 12. Chart. Comparison of sample speed profiles for $\mathbf{2 0}$ - and $\mathbf{6 0 - m i} / \mathrm{h}$ constant-pressure stops.

Figure 13. Chart. Comparison of sample deceleration profile for $\mathbf{2 0}$ - and $\mathbf{6 0 - m i} / \mathrm{h}$ constant-pressure stops.

6.2.3 Effect of Loading

Higher weight corresponds to lower deceleration as expected; based on Newton’s second law, the deceleration of the vehicle for a given force (i.e., provided the effect of weight on braking force and drag is insignificant) is directly proportional to the mass. This was observed in both the $20-$ and $60-\mathrm{mi} / \mathrm{h}$ tests (Figure 14 and Figure 15 respectively, shown in the following section).

Figure 14. Chart. Pressure-deceleration curves by load and brake condition for $20 \mathrm{mi} / \mathrm{h}$.

Figure 15. Chart. Pressure-deceleration curves by load and brake condition for $\mathbf{6 0} \mathbf{~ m i} / \mathrm{h}$.

6.2.4 Effect of Defect Position

The position of the defective pair of brakes influenced the position of the pressure/deceleration line. As shown in Figure 14 and Figure 15, disabling drive axle brakes resulted in a poorer brake performance than disabling trailer brakes. This observation held for all four combinations of initial speed (20 and $60 \mathrm{mi} / \mathrm{h}$) and loading condition (60,000-lb and 80,000-lb GVW).

6.3 NORMALIZATION AND OBSERVATIONS

Normalization equations were generated from full-function brake configuration only, and then applied to all data to determine how well the algorithm handles other data (the two disabled brake configurations). The basing of such an algorithm only on data from the fully-functioning
configuration is analogous to calibrating an onboard brake monitoring system with several constant-pressure stops when the brakes were in good condition (in order to detect performance degradation at a later time).

The original pressure/deceleration data is shown in Figure 16. Note that data from full-function, disabled-drive, and disabled-trailer braking conditions in the raw data set (not filtered by initial speed or GVW) overlap.

Figure 16. Chart. Original pressure-deceleration data before normalization.

6.3.1 Normalizing for Speed (to $20 \mathrm{mi} / \mathrm{h}$)

Since only two speeds were tested, normalizing for speed was done by finding the relationship between equivalent 20- and $60-\mathrm{mi} / \mathrm{h}$ tests-stops performed under the same loading conditions and at the same brake application pressure. A plot of deceleration for the $20-\mathrm{mi} / \mathrm{h}$ runs as a function of that of the equivalent $60-\mathrm{mi} / \mathrm{h}$ runs (Figure 17) revealed a strong linear relationship between the two $\left(r^{2}=0.99557\right)$. The regression line generated from the full-functioning brake system data was used to "convert" all $60-\mathrm{mi} / \mathrm{h}$ deceleration data (including all loading conditions and brake conditions) into equivalent $20-\mathrm{mi} / \mathrm{h}$ decelerations. A simple linear correction was possible in this test data because only two speeds were tested; the relationship between speed and drag is more complex, with instantaneous drag proportional to instantaneous speed. The limited
data collected in this testing was not conducive to the development of a more complex model able to handle a variety of speeds.

Figure 17. Chart. Full-function pressure-deceleration data normalized to $\mathbf{2 0} \mathbf{- m i} / \mathbf{h}$ initial speed.

6.3.2 Normalizing for Weight (to 60,000 lb)

Next, the vehicles were normalized for weight to $60,000 \mathrm{lb}$ GVW. p Deceleration for the 60,000 lb runs was plotted as a function of corresponding $80,000-\mathrm{lb}$ runs (Figure 18) and found to have a strong linear relationship $\left(r^{2}=0.99119\right)$. The regression line generated from the full-brakefunction runs was used to "convert" all 80,000-lb decelerations to equivalent 60,000-lb runs.

Figure 18. Chart. Full-function pressure-deceleration data normalized to 60,000-lb GVW load.

6.3.3 Results of Data Normalization

Once all the data was normalized to $20 \mathrm{mi} / \mathrm{h}$ and $60,000 \mathrm{lb}$, the full-function values are tightly grouped along a line with all disabled brake tests falling clearly less than the trend line for the fully-functioning brake system (Figure 19).

Figure 19. Chart. All pressure-deceleration data following normalization.

6.4 SUMMARY OF NOVEL RESEARCH AND PROGRESS

A simplified algorithm to normalize from $80,000-\mathrm{lb}$ load to $60,000-\mathrm{lb}$ load and from $60-\mathrm{mi} / \mathrm{h}$ to $20-\mathrm{mi} / \mathrm{h}$ initial speed was developed using data from the full-functioning brake system. When this algorithm was applied to the data from tests involving disabled brakes, it clearly fell below the pressure-acceleration trend line for fully-functioning data. In addition, the linear pressuredeceleration region was found to be consistent up through mid-range pressures (at least for this vehicle) with a greater limit of approximately 50 psi for the test vehicle.
[This page intentionally left blank.]

7. LESSONS LEARNED

As with any research and testing effort, certain lessons were learned; this may provide guidance for future research of a similar nature.

7.1 PROCUREMENT PROCESSES

The project team took into account procurement processes when designing the test, involving personnel from the research team procurement during the early stages of planning. This minimized the overall delay from test planning to actual testing. The challenges encountered during this test points to need for an adaptive procurement mechanism; in this testing, a brake failure occurred during the $97,000 \mathrm{lb}$ loading tests. When testing vehicles in this type of environment, there need to be plans in place to react; in this case the contract needed to be modified before proceeding with the repairs to resume testing. As such, there should be a general goal of minimizing changes, although procurement processes need to support some changes as inevitable.

7.2 CONSIDERATION OF TIRE LOAD CAPACITY

Due to load positioning in these configurations, an overload condition was created for the rating of the tires available for testing. This should be addressed in future testing to avoid exceeding load ratings of all components, including tires.

7.3 TIMING OF ANALYSIS COMPONENT

In this testing effort, an initial data analysis was budgeted for, thus allowing for the validation of test signals and values early in the data collect. Additionally, the data was subject to low-level analysis as it came in during the entire testing period. This provided an opportunity to catch any missing or clearly erroneous data while testing could still be repeated. This approach is recommended for future data collections to decrease the risk of invalid or lost data. Further, an ideal project plan would allow the entire analysis task to be conducted concurrently with data collection.
[This page intentionally left blank.]

8. FUTURE DIRECTIONS

This research revealed areas in which future research should focus in order to further develop and test an onboard brake assessment algorithm. Additional information needed to build a model includes intermediate speed(s). The correction factors for other speeds may be estimated from the relationship between drag and speed but should be confirmed using test data. It is suggested testing be performed at speeds such as $10-$, $20-, 40-$, and $60 \mathrm{mi} / \mathrm{h}$. This testing would be performed for two vehicles with different aerodynamic profiles. Data from the first vehicle would be used to fine-tune a simplified speed normalization algorithm. Then, looking at data from the second vehicle for only two speeds [e.g., 20 and $60 \mathrm{mi} / \mathrm{h}$], a speed normalization algorithm unique to the second vehicle's aerodynamics would be generated. The actual test data from the remaining test speeds for that vehicle would be used to corroborate the model.

While this research focused on the typical five-axle tractor-trailer vehicle with only two disabled-brake configurations (in addition to the fully-functioning system) to obtain a more complete picture of the vehicles on the roadway, testing should be expanded to other vehicle configurations such as straight trucks and six-axle combination trucks. Testing of vehicles meeting the older stopping distance requirements (currently more typical of vehicles currently on the roadways) may also provide a more complete picture of heavy vehicle braking capacities.
[This page intentionally left blank.]

APPENDIX A: SUMMARY OF STOPPING TEST RESULTS

Table 19. Summary of stopping test results.

Filename	Brakes Disabled	$\begin{array}{\|l} \text { Stop } \\ \text { \# (in } \\ \text { File) } \end{array}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02 Control Trailer Stops	None	1	20	20.70	29.90	28.00	104.1	111.2	21.6	1.69	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	None	2	20	20.80	29.10	27.00	106.4	112.9	20.4	1.68	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	None	3	20	20.50	29.30	28.00	107.2	113.0	19.6	1.73	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	None	4	60	60.70	232.60	227.00	101.1	112.0	18.8	4.99	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	None	5	60	60.60	225.50	221.00	100.6	111.8	19.6	4.77	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	None	6	60	60.30	229.00	227.00	100.6	111.7	19.5	4.81	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	Front Drive	7	20	20.80	47.60	44.00	106.4	107.8	11.1	2.94	1,3340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	Front Drive	8	20	20.90	46.90	43.00	106.5	107.7	11.3	2.91	13,340	38020	4,500	55,860
UTB-02 Control Trailer Stops	Front Drive	9	20	20.60	45.60	43.00	105.5	107.1	11.6	2.83	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	Front Drive	10	60	60.70	414.20	405.00	95.1	107.6	10.2	8.97	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	Front Drive	11	60	60.50	410.40	404.00	93.9	106.9	10.1	8.97	13,340	38,020	4,500	55,860
UTB-02 Control Trailer Stops	Front Drive	12	60	60.20	399.20	396.00	94.5	106.0	10.6	8.67	13,340	38,020	4,500	55,860
UTB-02_60k_Full_Function_Stops	None	1	20	20.60	29.80	28.09	107.7	107.7	19.4	1.70	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	2	20	20.50	29.00	27.60	106.9	107.5	18.8	1.70	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	3	20	20.40	28.50	27.39	106.4	106.6	19.2	1.70	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	4	60	60.30	221.40	219.20	98.2	103.6	19.5	4.70	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	5	60	60.50	225.50	221.79	101.2	105.7	19.7	4.70	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	6	60	60.40	239.90	236.73	103.3	107.0	18.7	4.90	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	7	20	20.40	90.50	86.99	15.2	13.9	5.3	5.60	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	8	20	20.40	89.90	86.41	15.2	13.8	5.4	5.60	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	9	60	60.20	777.70	772.54	15.3	14.0	5.1	17.10	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	10	60	60.30	779.70	771.96	15.4	14.0	5.1	17.00	12,630	24,490	22,920	60,040

Filename	Brakes Disabled	$\begin{aligned} & \text { Stop } \\ & \text { \# (in } \\ & \text { File) } \end{aligned}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02_60k_Full_Function_Stops	None	11	20	20.40	51.80	49.79	24.8	23.7	10.1	3.10	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	12	20	20.40	52.30	50.27	24.8	23.7	10.0	3.10	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	13	60	60.40	466.60	460.44	24.7	23.8	8.7	10.00	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	14	60	60.20	457.10	454.07	24.7	23.8	8.7	9.90	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	15	20	20.60	38.60	36.38	35.1	33.8	14.6	2.30	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	16	20	20.40	331.60	318.72	35.2	33.8	14.7	2.20	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	17	60	60.50	338.80	333.22	35.0	33.9	12.6	7.00	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	18	60	60.30	33.90	33.56	35.1	34.1	12.5	7.10	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	19	20	20.50	32.90	31.31	45.0	44.6	16.7	2.00	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	20	20	20.50	32.90	31.31	44.8	44.5	17.7	1.90	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	21	60	60.30	284.90	282.07	44.7	44.5	15.1	5.90	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	22	60	60.20	286.30	284.40	44.8	44.5	15.4	5.90	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	23	20	20.50	320.00	30.46	55.6	55.0	16.9	1.90	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	24	20	20.40	31.60	30.37	55.6	55.1	19.5	1.80	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	25	60	60.10	270.50	269.60	55.6	55.1	15.9	5.60	12,630	24,490	22,920	60,040
UTB-02_60k_Full_Function_Stops	None	26	60	60.10	264.70	263.82	55.1	55.2	16.4	5.50	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	1	20	20.60	36.50	34.40	110.00	108.3	14.6	2.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	2	20	20.70	36.40	33.98	109.30	108.1	14.6	2.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	3	20	20.60	35.70	33.65	111.10	109.0	14.3	2.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	4	60	60.30	295.20	292.27	105.10	106.9	14.0	6.30	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	5	60	60.40	313.00	308.87	103.80	106.1	13.4	6.70	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	6	60	60.30	299.00	296.03	104.10	105.7	13.9	6.40	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	7	20	20.60	112.00	105.57	14.70	13.3	4.2	7.00	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	8	20	20.50	109.20	103.94	14.80	13.5	4.3	6.80	12,630	24,490	22,920	60,040

Filename	Brakes Disabled	Stop \# (in File)	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	9	60	60.40	968.30	955.52	14.9	13.6	4.0	21.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	10	60	60.40	925.50	913.28	15.1	13.6	4.1	20.50	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	11	20	20.40	61.70	59.30	25.1	23.8	8.1	3.80	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	12	20	20.60	62.10	58.54	25.1	24.0	8.2	3.80	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	13	60	60.40	559.30	551.92	24.8	24.0	7.0	12.30	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	14	60	60.20	549.40	545.76	24.9	24.1	7.1	12.10	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	15	20	20.20	45.40	44.51	34.8	33.7	11.4	2.80	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	16	20	20.20	45.60	44.70	34.9	33.8	11.6	2.70	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	17	60	60.30	435.20	430.88	34.8	33.9	9.6	9.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	18	60	60.20	411.30	408.57	34.8	33.9	9.9	8.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	19	20	20.30	40.90	39.70	44.8	44.2	12.5	2.50	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	20	20	20.20	41.90	41.07	44.7	44.3	12.6	2.50	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	21	60	60.10	380.60	379.33	44.8	44.2	11.0	7.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	22	60	60.40	386.40	381.30	44.9	44.3	11.1	8.00	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	23	20	20.20	41.40	40.58	54.9	54.5	12.8	2.50	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	24	20	20.30	40.20	39.02	55.0	54.5	12.9	2.40	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	25	60	60.30	370.20	366.53	55.2	54.9	11.2	7.80	12,630	24,490	22,920	60,040

Filename	Brakes Disabled	Stop \# (in File)	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB- 02_60k_Failed_Drive_Axle_Stops	Front Drive	26	60	60.10	364.80	363.59	55.0	54.8	11.5	7.70	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	1	20	20.30	29.30	28.44	110.6	110.6	17.9	1.80	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	2	20	20.20	30.20	29.60	110.0	110.7	16.6	1.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	3	20	20.20	30.40	29.80	110.2	110.2	16.6	1.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	4	60	60.20	246.10	244.47	104.0	105.1	17.4	5.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	5	60	60.50	254.00	249.82	103.3	108.8	17.1	5.30	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	6	60	60.40	257.00	253.61	101.7	109.0	17.0	5.40	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	7	20	20.50	111.00	105.65	15.1	13.5	4.3	6.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	8	20	20.70	111.00	103.62	15.1	13.5	4.4	6.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	9	60	59.70	991.60	1001.59	15.1	13.9	3.9	22.10	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	10	60	60.40	977.50	964.619	15.1	13.9	4.0	21.80	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	11	20	20.40	60.80	58.44	25.1	24.0	8.4	3.70	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	12	20	20.60	61.40	57.88	25.3	24.1	8.3	3.70	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	13	60	60.70	547.50	534.95	24.9	24.0	7.3	11.90	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	14	60	59.80	525.50	529.02	24.8	23.9	7.3	11.60	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	15	20	20.20	42.90	42.05	35.2	34.1	12.2	2.60	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	16	20	20.60	44.70	42.13	35.1	34.1	12.1	2.60	12,630	24,490	22,920	60,040

Filename	Brakes Disabled	Stop \# (in File)	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	17	60	60.50	395.10	388.60	35.10	34.10	10.500	8.40	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	18	60	60.30	383.80	379.99	35.00	34.10	10.500	8.30	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	19	20	20.70	37.00	34.54	45.00	44.00	15.600	2.10	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	20	20	20.60	37.50	35.35	45.30	44.30	15.600	2.20	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	21	60	60.50	318.80	313.55	45.00	44.50	13.200	6.70	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	22	60	60.20	311.20	309.14	44.90	44.40	13.600	6.60	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	23	20	19.90	32.90	33.23	55.20	54.80	17.100	2.00	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	24	20	20.70	35.50	33.14	55.40	54.90	17.000	2.00	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	25	60	60.50	300.20	295.26	55.40	55.00	14.800	6.10	12,630	24,490	22,920	60,040
UTB- 02_60k_Failed_Trailer_Axle_Stops	Rear Trailer	26	60	60.50	300.10	295.16	55.60	55.10	14.600	6.10	12,630	24,490	22,920	60,040
UTB-02_80k_Full_Function_Stops	None	1	20	20.28	28.05	27.28	109.29	111.73	20.659	1.63	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	2	20	20.17	28.38	27.90	108.87	110.88	19.574	1.66	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	3	20	20.28	29.00	28.20	109.68	110.87	18.810	1.71	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	4	60	60.32	217.95	215.64	100.79	111.38	19.342	4.66	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	5	60	60.58	228.18	223.83	99.30	110.68	19.073	4.81	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	7	60	60.32	233.83	231.36	95.11	107.48	18.283	4.92	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	8	20	20.17	115.52	113.58	14.87	13.43	3.972	7.38	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	9	20	20.36	115.78	111.72	14.95	13.42	3.993	7.32	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	10	60	60.21	1057.71	1050.34	14.94	13.55	3.592	23.57	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	11	60	60.51	1045.51	1027.96	14.90	13.56	3.598	23.15	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	12	20	20.32	63.75	61.75	24.76	23.79	7.511	3.97	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	13	20	20.32	63.91	61.91	24.78	23.83	7.475	3.97	12,810	32,640	34,590	80,040

Filename	Brakes Disabled	$\begin{aligned} & \text { Stop } \\ & \text { \# (in } \\ & \text { File) } \end{aligned}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02_80k_Full_Function_Stops	None	14	60	60.06	574.15	573.00	24.91	24.20	6.684	12.66	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	15	60	60.25	567.75	563.05	24.85	24.22	6.779	12.49	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	16	20	20.24	46.59	45.49	34.62	33.63	11.067	2.82	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	17	20	20.32	46.39	44.94	34.66	33.68	11.220	2.79	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	18	60	60.17	410.14	407.83	34.86	33.94	9.560	8.99	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	19	60	60.21	414.50	411.61	34.86	33.95	9.545	9.05	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	20	20	20.13	38.39	37.90	44.84	44.36	14.175	2.28	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	21	20	20.24	38.75	37.84	44.87	44.40	14.254	2.29	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	22	60	60.51	335.30	329.67	44.83	44.47	12.289	7.19	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	23	60	60.66	350.03	342.45	44.85	44.53	11.941	7.41	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	24	20	20.43	33.96	32.55	54.99	54.49	17.472	1.95	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	25	20	20.43	34.68	33.24	54.84	54.47	16.624	2.00	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	26	60	60.14	286.71	285.38	54.98	54.63	14.686	6.04	12,810	32,640	34,590	80,040
UTB-02_80k_Full_Function_Stops	None	27	60	60.40	295.08	291.18	55.03	54.75	14.744	6.14	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	7	20	20.54	36.15	34.27	106.90	106.21	14.380	2.18	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	8	20	20.69	37.14	34.70	106.60	105.62	13.906	2.24	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	9	20	21.18	38.75	34.55	105.07	104.98	13.906	2.29	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	10	60	60.43	319.52	315.00	100.71	104.17	12.763	6.86	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	11	60	60.43	312.37	307.94	100.20	103.05	13.169	6.73	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	12	60	60.14	306.33	304.91	98.25	102.51	13.121	6.67	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	1	20	20.54	131.36	124.54	14.87	13.84	3.550	8.34	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	2	20	20.36	131.59	126.98	14.98	13.90	3.513	8.36	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	4	60	60.55	1291.96	1268.60	15.05	14.26	2.939	28.88	12,810	32,640	34,590	80,040

Filename	Brakes Disabled	Stop \# (in File)	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	5	60	60.58	1273.29	1249.03	15.08	14.29	3.097	28.19	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	13	20	20.51	85.79	81.58	25.11	23.81	5.626	5.36	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	14	20	20.65	85.04	79.77	25.19	23.92	5.731	5.30	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	15	60	60.58	780.28	765.41	25.28	24.14	4.972	17.34	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	16	60	59.76	694.85	700.44	25.32	24.14	5.115	16.06	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	17	20	20.80	60.66	56.08	35.17	33.98	8.502	3.68	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	18	20	20.62	59.06	55.56	35.11	33.96	8.654	3.59	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	19	60	60.40	545.96	538.75	34.91	34.11	7.232	12.00	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	20	60	60.47	546.82	538.35	34.94	34.04	7.264	12.01	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	21	20	20.80	47.93	44.31	45.23	44.53	11.104	2.86	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	22	20	20.47	46.88	44.75	45.01	44.47	11.183	2.82	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	23	60	60.43	423.82	417.81	45.09	44.72	9.276	9.26	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	24	60	60.32	426.08	421.57	44.99	44.70	9.150	9.35	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	25	20	20.65	41.31	38.75	55.72	55.04	13.569	2.42	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	26	20	20.62	41.60	39.14	55.70	55.11	13.548	2.42	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	27	60	60.32	363.98	360.13	55.72	55.39	11.083	7.86	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Drive_Axle_Stops	Front Drive	28	60	60.40	367.65	362.80	55.71	55.45	11.072	7.89	12,810	32,640	34,590	80,040

Filename	Brakes Disabled	$\begin{aligned} & \text { Stop } \\ & \text { \# (in } \\ & \text { File) } \end{aligned}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	1	20	20.58	33.10	31.26	106.71	109.83	16.482	1.96	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	2	20	20.73	31.40	29.23	105.82	110.43	18.304	1.83	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	3	20	20.88	33.20	30.46	104.51	108.54	17.952	1.89	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	4	60	60.43	264.24	260.49	98.63	108.79	15.871	5.64	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	5	60	60.51	260.24	255.87	97.90	106.94	16.076	5.57	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	6	60	60.62	257.05	251.82	97.27	106.48	16.113	5.54	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	7	20	20.54	148.33	140.63	14.89	13.64	3.113	9.36	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	8	20	20.62	148.13	139.35	14.93	13.63	3.139	9.35	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	9	60	60.47	1360.53	1339.46	14.79	13.79	2.818	30.40	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	10	60	60.17	1337.27	1329.72	14.94	13.90	2.887	29.61	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	11	20	20.54	79.17	75.06	25.01	23.92	6.073	4.91	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	12	20	20.58	79.99	75.54	25.08	23.99	6.026	4.95	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	13	60	60.32	724.34	716.67	25.06	24.11	5.304	15.99	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	14	60	60.40	703.18	693.90	25.07	24.14	5.410	15.44	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	15	20	20.54	57.87	54.87	35.16	33.90	8.765	3.52	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	16	20	20.58	58.27	55.03	35.16	33.88	8.755	3.54	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	17	60	60.58	511.06	501.32	35.13	34.00	7.701	11.18	12,810	32,640	34,590	80,040

Filename	Brakes Disabled	Stop \# (in File)	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	18	60	60.43	501.74	494.63	35.11	33.96	7.833	10.99	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	19	20	20.51	45.14	42.92	45.15	44.69	11.699	2.71	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	20	20	20.54	45.05	42.71	45.08	44.59	11.673	2.70	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	21	60	60.36	391.90	387.24	45.15	44.84	10.066	8.55	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	22	60	60.62	399.25	391.13	45.01	44.80	10.161	8.63	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	23	20	20.10	37.43	37.06	54.75	54.27	14.306	2.24	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	25	20	20.17	38.19	37.55	54.37	53.75	14.117	2.28	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	26	60	60.43	332.94	328.22	55.15	54.75	12.268	7.16	12,810	32,640	34,590	80,040
UTB- 02_80k_Failed_Trailer_Axle_Stops	Rear Trailer	27	60	60.21	338.32	335.96	55.17	54.69	12.242	7.20	12,810	32,640	34,590	80,040
UTB-02_80k_Unbalanced_Stops	None	1	20	20.69	29.95	27.99	107.01	110.68	18.742	1.77	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	None	2	20	20.65	28.18	26.43	105.64	110.53	21.765	1.62	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	None	3	20	20.80	28.12	26.00	106.47	110.28	21.465	1.61	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	None	4	60	60.66	226.84	221.93	99.21	109.92	19.347	4.78	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	None	5	60	60.32	223.49	221.13	99.93	108.29	19.363	4.71	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	None	6	60	60.55	229.72	225.57	99.55	109.60	18.721	4.83	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Front Drive	7	20	20.77	39.24	36.38	107.12	107.76	13.232	2.35	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Front Drive	8	20	20.54	39.04	37.01	108.88	109.36	13.306	2.34	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Front Drive	9	20	20.65	39.07	36.65	104.93	105.51	13.395	2.37	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Front Drive	10	60	60.55	325.23	319.35	99.93	105.18	12.458	7.04	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Front Drive	11	60	60.55	329.17	323.22	99.25	103.96	12.421	7.11	13,200	38,710	28,100	80,010

Filename	Brakes Disabled	$\begin{aligned} & \text { Stop } \\ & \text { \# (in } \\ & \text { File) } \end{aligned}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02_80k_Unbalanced_Stops	Front Drive	12	60	60.58	324.38	318.20	97.41	102.67	12.510	7.06	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Rear Trailer	14	20	20.62	29.95	28.18	104.30	109.37	18.931	1.75	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Rear Trailer	15	20	20.73	31.14	28.99	106.89	110.53	17.920	1.82	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Rear Trailer	16	20	20.80	31.56	29.18	103.50	108.10	16.993	1.87	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Rear Trailer	17	60	60.47	247.05	243.22	98.71	109.92	17.093	5.26	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Rear Trailer	18	60	60.47	254.23	250.29	98.70	109.79	16.661	5.41	13,200	38,710	28,100	80,010
UTB-02_80k_Unbalanced_Stops	Rear Trailer	19	60	60.73	251.80	245.78	98.80	110.43	17.035	5.33	13,200	38,710	28,100	80,010
UTB-02_91.2k_Stops	None	1	20	20.51	28.77	27.36	108.21	110.71	18.815	1.70	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	None	2	20	20.73	30.05	27.97	106.47	108.86	19.021	1.73	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	None	3	20	20.77	29.49	27.34	106.29	110.52	19.758	1.70	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	None	4	60	60.66	234.88	229.80	99.22	108.79	18.526	4.94	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	None	5	60	60.55	224.31	220.25	100.26	110.36	19.258	4.73	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	None	6	60	60.14	228.38	227.32	99.53	109.74	19.247	4.75	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Front Drive	7	20	20.69	38.94	36.39	108.86	108.77	13.216	2.34	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Front Drive	8	20	20.62	39.50	37.16	105.92	106.53	13.385	2.33	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Front Drive	9	20	20.65	39.47	37.02	107.97	108.15	12.789	2.39	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Front Drive	10	60	60.66	318.57	311.68	100.66	105.71	13.311	6.73	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Front Drive	11	60	60.58	316.31	310.28	99.59	103.49	13.174	6.74	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Front Drive	12	60	60.81	317.42	309.02	100.34	105.29	13.421	6.65	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Rear Trailer	13	20	20.43	32.61	31.25	108.95	111.74	16.377	1.93	13,140	38,240	40,060	91,440

Filename	Brakes Disabled	$\begin{aligned} & \text { Stop } \\ & \text { \# (in } \\ & \text { File) } \end{aligned}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02_91.2k_Stops	Rear Trailer	14	20	20.73	33.96	31.61	105.77	109.54	15.908	2.01	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Rear Trailer	15	20	20.73	34.19	31.82	105.27	108.75	16.919	1.98	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Rear Trailer	16	60	60.51	274.61	270.00	98.49	109.67	15.581	5.77	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Rear Trailer	17	60	60.88	279.30	271.28	98.14	108.74	15.634	5.77	13,140	38,240	40,060	91,440
UTB-02_91.2k_Stops	Rear Trailer	19	60	60.62	282.71	276.96	94.46	108.59	15.56	5.85	13,140	38,240	40,060	91,440
UTB-02_97k_Stops	None	1	20	20.62	31.66	29.78	107.02	110.03	16.403	1.87	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	None	2	20	20.54	29.95	28.40	104.86	108.50	20.891	1.69	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	None	3	20	20.80	31.56	29.18	105.81	108.02	19.305	1.77	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	None	4	60	60.73	246.42	240.53	98.99	106.70	17.646	5.12	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	None	5	60	60.51	236.19	232.23	98.21	106.97	18.236	4.98	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	None	6	60	60.70	249.34	243.62	98.70	106.89	17.514	5.19	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	Front Drive	7	20	20.65	39.27	36.84	108.27	100.20	13.964	2.32	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	Front Drive	8	20	20.69	39.96	37.34	107.40	106.47	13.759	2.32	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	Front Drive	9	20	20.77	39.93	37.02	106.9	101.36	13.353	2.38	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	Front Drive	10	60	60.66	336.45	329.17	99.02	103.45	12.489	7.17	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	Front Drive	11	60	60.62	340.42	333.49	98.39	103.05	11.852	7.36	12,660	33,390	51,070	97,120
UTB-02_97k_Stops	Front Drive	12	60	60.70	331.89	324.28	99.23	101.18	12.579	7.17	12,660	33,390	51,070	97,120
UTB-02 106k Stops	None	1	20	20.54	29.59	28.05	107.33	113.10	18.541	1.74	13,710	45,080	47,550	106,340
UTB-02 106k Stops	None	2	20	20.77	30.02	27.84	105.93	111.65	18.757	1.74	13,710	45,080	47,550	106,340
UTB-02 106k Stops	None	3	20	20.69	30.22	28.24	107.01	112.24	18.631	1.76	13,710	45,080	47,550	106,340
UTB-02 106k Stops	None	4	60	60.47	248.10	244.26	104.98	110.09	17.161	5.26	13,710	45,080	47,550	106,340
UTB-02 106k Stops	None	5	60	60.17	241.01	239.65	98.72	109.18	17.488	5.10	13,710	45,080	47,550	106,340

Filename	Brakes Disabled	Stop \# (in File)	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02 106k Stops	None	6	60	60.14	238.71	237.60	104.69	110.88	18.231	5.02	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Front Drive	7	20	20.51	40.85	38.84	106.84	108.55	12.710	2.45	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Front Drive	8	20	20.69	39.14	36.57	104.5	107.84	13.095	2.37	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Front Drive	9	20	20.54	40.09	38.01	106.41	108.54	12.953	2.42	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Front Drive	10	60	60.14	325.33	323.82	100.48	105.71	12.268	7.10	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Front Drive	11	60	59.99	334.25	334.36	100.04	104.6	12.178	7.25	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Front Drive	12	60	60.25	324.41	321.72	101.23	106.34	12.384	7.08	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Rear Trailer	13	20	20.06	32.19	32.00	104.51	115.21	17.193	1.90	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Rear Trailer	14	20	20.39	32.81	31.57	103.61	113.73	17.778	1.89	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Rear Trailer	15	20	20.54	32.74	31.04	103.51	114.25	17.878	1.88	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Rear Trailer	20	60	60.51	299.18	294.16	103.69	113.27	13.58	6.48	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Rear Trailer	21	60	60.21	291.54	289.51	103.11	112.04	14.138	6.29	13,710	45,080	47,550	106,340
UTB-02 106k Stops	Rear Trailer	22	60	60.10	299.87	298.87	102.01	112.44	13.716	6.44	13,710	45,080	47,550	106,340
UTB-02 116k Stops	None	1	20	20.77	31.96	29.63	105.24	113.57	17.757	1.85	13,780	48,770	53,550	116,100
UTB-02 116k Stops	None	2	20	20.73	31.23	29.07	104.62	111.81	18.668	1.79	13,780	48,770	53,550	116,100
UTB-02 116k Stops	None	3	20	20.73	31.50	29.32	105.35	111.36	18.863	1.78	13,780	48,770	53,550	116,100
UTB-02 116k Stops	None	4	60	58.65	234.48	245.40	103.63	109.22	16.529	5.22	13,780	48,770	53,550	116,100
UTB-02 116k Stops	None	5	60	59.13	243.57	250.79	99.83	108.48	16.219	5.35	13,780	48,770	53,550	116,100
UTB-02 116k Stops	None	6	60	59.20	254.07	260.98	102.28	108.70	15.776	5.50	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Front Drive	7	20	20.65	37.70	35.36	107.34	110.58	14.248	2.25	13,780	48,770	53,550	116,100

Filename	Brakes Disabled	$\begin{aligned} & \text { Stop } \\ & \text { \# (in } \\ & \text { File) } \end{aligned}$	Target Speed (mi/h)	Actual Speed (mi/h)	Actual Stop Distance (ft)	Corrected Stop Distance (ft)	Avg. Primary Control Pressure (psi)	Avg. Secondary Control Pressure (psi)	Avg. Decel (ft/s/s)	Stop Time (sec)	Steer Axle Weight (lb)	Drive Tandem Axles Weight (lb)	Trailer Tandem Axles Weight (lb)	GVW (lb)
UTB-02 116k Stops	Front Drive	8	20	20.77	40.75	37.78	105.24	108.10	14.038	2.34	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Front Drive	9	20	20.84	37.37	34.42	104.45	108.88	16.419	2.12	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Front Drive	10	60	59.09	333.69	344.05	103.83	106.57	11.552	7.45	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Front Drive	11	60	59.24	330.25	338.78	104.87	106.94	11.752	7.37	13,780	48,770	53,550	116,100
UTB-02 116k Stops	$\begin{aligned} & \hline \text { Front } \\ & \text { Drive } \\ & \hline \end{aligned}$	12	60	58.94	327.49	339.38	103.71	107.20	11.904	7.25	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Rear Trailer	13	20	20.51	34.22	32.54	106.55	116.27	16.635	1.98	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Rear Trailer	14	20	20.73	34.68	32.28	104.36	113.02	17.014	1.99	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Rear Trailer	15	20	20.47	34.19	32.64	104.58	114.37	16.255	2.01	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Rear Trailer	16	60	59.24	313.25	321.34	102.14	110.80	12.389	6.95	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Rear Trailer	17	60	58.94	308.83	320.04	101.80	109.14	12.468	6.92	13,780	48,770	53,550	116,100
UTB-02 116k Stops	Rear Trailer	18	60	59.17	308.40	317.11	102.95	109.94	12.684	6.86	13,780	48,770	53,550	116,100

[This page intentionally left blank.]

APPENDIX B: BRAKE STROKE MEASUREMENT LOG

AXLE POSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L	5R		
BSAP	$21 / 4$		$21 / 4$		2 $1 / 4$		$21 / 4$		$21 / 4$		$21 / 4$		6 $3 / 4$		6 $3 / 4$		$63 / 4$		$63 / 4$	
					2								7		7					
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	1/2	1/4	$21 / 2$	1/4	21/2	1/4	$25 / 8$	3/8	1/2	3/4	3/8	5/8	75/8	7/8	$71 / 2$	3/4
90 PSI	3 3/8	1 $1 / 8$	$33 / 8$	$1 / 8$ $1 / 8$	3 $1 / 2$	1 1/4	3 $9 / 16$	1 $5 / 16$	3 5/8	$13 / 8$	8 5/8	$63 / 8$	8 $5 / 8$	$17 / 8$	8 $1 / 2$	$13 / 4$	$83 / 4$	2	$83 / 4$	2
SPRING BRAKE S					3 $1 / 4$	3/4	$31 / 4$	3/4					8 $1 / 4$	$11 / 2$	8 $3 / 16$	1 $7 / 16$	$83 / 8$	$15 / 8$	$81 / 4$	$11 / 2$

AXLE POSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L		5R	
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		2 1/4		$\begin{array}{r} 6 \\ 3 / 4 \end{array}$		6 $3 / 4$		$63 / 4$		$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	$\begin{array}{r} 2 \\ 1 / 2 \end{array}$	1/4	$21 / 2$	1/4	25/8	3/8	$21 / 2$	1/4	7 $1 / 2$	3/4	7 $7 / 16$	11/16	7 1/2	3/4	$71 / 2$	3/4
$90 \mathrm{PSI}$	$\begin{array}{r} 3 \\ 5 / 16 \end{array}$	$\begin{array}{r} 1 \\ 1 / 16 \end{array}$	$\begin{array}{r} 3 \\ 5 / 16 \end{array}$	$\begin{array}{r} 1 \\ 1 / 16 \end{array}$	3 $1 / 2$	1 1/4	$\begin{array}{r} 3 \\ 9 / 16 \end{array}$	1 $5 / 16$	$\begin{array}{r} 3 \\ 9 / 16 \end{array}$	$\begin{array}{r} 1 \\ 5 / 16 \end{array}$	$31 / 2$	$11 / 4$	8 $3 / 4$	2	8 $5 / 8$	$17 / 8$	$\begin{array}{r} 8 \\ 13 / 16 \end{array}$	$21 / 16$	$\begin{array}{r} 8 \\ 11 / 16 \end{array}$	1 $15 / 16$
SPRING BRAKES					$\begin{array}{r} 3 \\ 1 / 4 \\ \hline \end{array}$	3/4	$31 / 4$	$3 / 4$					8 $1 / 4$	$11 / 2$	8 $1 / 4$	$11 / 2$	$83 / 8$	$15 / 8$	8 1/4	$11 / 2$

COMMENTS:	Pre 80	ailed	Drive Ax														DATE:			5/15	2012
AXLE POSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L			5R	
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		2 1/4		$21 / 4$		$21 / 4$		$\begin{array}{r} 6 \\ 3 / 4 \end{array}$		6 $3 / 4$		$63 / 4$			$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	2/	1/4	$\begin{array}{r} 2 \\ 9 / 16 \end{array}$	5/16	$23 / 4$	1/2	$21 / 2$	1/4	7 $5 / 8$	7/8	7 $1 / 2$	3/4	$71 / 2$		3/4	$73 / 8$	5/8
$90 \mathrm{PSI}$	$31 / 4$	1	$\begin{array}{r} 3 \\ 5 / 16 \end{array}$	$\begin{array}{r} 1 \\ 1 / 16 \end{array}$	$\begin{array}{r} 3 \\ 1 / 2 \end{array}$	1 1/4	$31 / 2$	1 1/4	$37 / 8$	$15 / 8$	$31 / 2$	$11 / 4$	$\begin{array}{r} 8 \\ 3 / 4 \end{array}$	2	$\begin{array}{r} 8 \\ 5 / 8 \end{array}$	$17 / 8$	$83 / 4$		2	8 5/8	$17 / 8$
SPRING BRAKE S					$\begin{array}{r} 3 \\ 1 / 4 \end{array}$	$3 / 4$	$31 / 4$	11/16					$\begin{array}{r} 8 \\ 1 / 4 \\ \hline \end{array}$	$11 / 2$	$\begin{array}{r} 8 \\ 1 / 4 \\ \hline \end{array}$	$11 / 2$	$83 / 8$	1	5/8	$81 / 4$	$11 / 2$
COMMENTS:	Pre 80 k Failed Trailer Axle																DATE:			5/16/2012	

AXLE POSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L		5R	
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		$21 / 4$		6 $3 / 4$		$\begin{array}{r}6 \\ 3 / 4 \\ \hline\end{array}$		6 3/4		$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	2 $3 / 8$	1/8	$23 / 8$	1/8	$25 / 8$	3/8	$\begin{array}{r} 2 \\ 7 / 16 \end{array}$	3/16	7 $3 / 4$	1	7 $1 / 2$	3/4	7 1/2	3/4	$73 / 8$	5/8
90 PSI	3 1/4	1	$31 / 2$	1/4	3 $3 / 8$	$11 / 8$	3 5/8	1318	$33 / 4$	$11 / 2$	3 $7 / 16$	1 $3 / 16$	8 $5 / 8$	$17 / 8$	8 $5 / 8$	$17 / 8$	$83 / 4$	2	$85 / 8$	$17 / 8$
SPRING BRAKES					$\begin{array}{r} 10 \\ \hline 3 \\ 1 / 8 \end{array}$	3/4	$31 / 8$	3/4					8 $1 / 4$	$11 / 2$	8 $1 / 4$	$11 / 2$	$83 / 8$	$15 / 8$	$81 / 4$	1 1/2

AXLE POSITION	1 L		1R		2L		2R		3L		3R		4L		4R		5L		5R	
BSAP	$21 / 4$		$21 / 4$		2 $1 / 4$		$21 / 4$		$21 / 4$		$21 / 4$		6 $3 / 4$		6 $3 / 4$		$63 / 4$		$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	2 $3 / 8$	1/8	$23 / 8$	1/8	$21 / 2$	1/4	$23 / 8$	1/8	7/8	$11 / 8$	1/2	3/4	$71 / 2$	3/4	$73 / 8$	5/8
90 PSI	3 3/4	1 $1 / 2$	$31 / 2$	1 $1 / 4$	3 $3 / 8$	$11 / 8$	3 5/8	138	$31 / 2$	1 1/4	$33 / 8$	$11 / 8$	8 $1 / 2$	$13 / 4$	8 $1 / 2$	$13 / 4$	8 5/8	$17 / 8$	8 $9 / 16$	1316
SPRING BRAKES					$\begin{array}{r} 3 \\ 1 / 8 \end{array}$	3/4	$31 / 8$	3/4					8 $3 / 16$	1	8 $3 / 16$	1 $7 / 16$	$81 / 4$	1 1/2	$81 / 4$	$11 / 2$

AXLE POSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L	5R		
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		$21 / 4$		$\begin{array}{r} 6 \\ \hline 6 / 4 \end{array}$		6 $3 / 4$		$63 / 4$		$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	2 $1 / 2$	1/4	$21 / 2$	1/4	21/2	1/4	$21 / 2$	1/4	7 $1 / 2$	3/4	7 $7 / 16$	11/16	7 1/2	3/4	$73 / 8$	5/8
90 PSI	$31 / 4$	1	$31 / 4$	1	3 $5 / 8$	1318	$31 / 2$	$11 / 4$	3 5/8	$13 / 8$	3 5/8	$13 / 8$	8 $1 / 2$	$13 / 4$	\% 8	$13 / 4$	$85 / 8$	$17 / 8$	8 $7 / 16$	1 $11 / 16$
SPRING BRAKES					$\begin{array}{r} 3 \\ 1 / 8 \end{array}$	5/8	$31 / 8$	5/8					8 $3 / 16$	1 $7 / 16$	8 $3 / 16$	7/16	$81 / 4$	$11 / 2$	$81 / 4$	$11 / 2$

AXLE POSITION
BSAP
FREE STROKE
90 PSI
SPRING BRAKE S

1L	1R			2L	2R			3L		3R		4L	4R			5L	5R		
$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		2 1/4		$\begin{array}{r} 6 \\ 3 / 4 \end{array}$		$\begin{array}{r} 6 \\ 3 / 4 \end{array}$		$63 / 4$		$63 / 4$	
$21 / 2$	1/4	$21 / 2$	1/4	$\begin{array}{r} 2 \\ 1 / 2 \end{array}$	1/4	$21 / 2$	1/4	$21 / 2$	1/4	$\begin{array}{r} 2 \\ 7 / 16 \end{array}$	3/16	7 $1 / 2$	3/4	$\begin{array}{r} 7 \\ 1 / 2 \end{array}$	3/4	$71 / 2$	3/4	$73 / 8$	5/8
$31 / 4$	1	$31 / 4$	1	3 $1 / 2$	1 1/4	$31 / 2$	1 1/4	$31 / 2$	1 1/4	3 1/2	1 1/4	8 $5 / 8$	$17 / 8$	$\begin{array}{r} 8 \\ 1 / 2 \end{array}$	$13 / 4$	$83 / 4$	2	8 5/8	$17 / 8$
				$\begin{array}{r} 3 \\ 1 / 4 \end{array}$	3/4	$\begin{array}{r} 3 \\ 3 / 16 \end{array}$	11/16					$\begin{array}{r} 8 \\ 3 / 16 \end{array}$	1 $7 / 16$	$\begin{array}{r} 8 \\ 3 / 16 \end{array}$	1 $7 / 16$	$83 / 8$	$15 / 8$	8 1/4	$11 / 2$

AXLE POSITION
BSAP
FREE STROKE
90 PSI
SPRING BRAKES

COMMENTS: Pre 97 k Full Function
DATE: 5/19/2012

AXLE POSITION
BSAP
FREE STROKE
90 PSI
SPRING BRAKES

COMMENTS:
Pre 97 k Failed Drive Axde
DATE: \quad 5/20/2012

AXLE POSITION
BSAP
FREE STROKE
90 PSI
SPRING BRAKES

1L	1R			2L	2R			3L	3R			4L		4R		5L		5R	
$21 / 4$		$21 / 4$		2 $1 / 4$		$21 / 4$		$21 / 4$		$21 / 4$		6 $3 / 4$		6 $3 / 4$		$63 / 4$		$63 / 4$	
$21 / 2$	$1 / 4$	$21 / 2$	1/4	\% ${ }_{1 / 2}$	1/4	$21 / 2$	1/4	21/2	1/4	$21 / 2$	1/4	7 $3 / 8$	5/8	3/8	5/8	7 1/2	3/4	7 3/8	5/8
$31 / 4$	1	$31 / 4$	1	3 $1 / 2$	$11 / 4$	$31 / 2$	1 1/4	$31 / 2$	$11 / 4$	$31 / 2$	$11 / 4$	8 $1 / 2$	$13 / 4$	8 $5 / 8$	$17 / 8$	$83 / 4$	2	8 $9 / 16$	13/16
				$\begin{array}{r} 3 \\ 1 / 4 \end{array}$	3/4	$31 / 8$	5/8					$\begin{array}{r} 8 \\ 3 / 16 \\ \hline \end{array}$	1 $7 / 16$	8 $3 / 16$	1 $7 / 16$	$81 / 4$	$11 / 2$	8 $3 / 16$	1 $7 / 16$

AXLE POSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L		5R	
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		$21 / 4$		6 $3 / 4$		6 $3 / 4$		$63 / 4$		$63 / 4$	
					2								7		7					
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	5/8	3/8	$25 / 8$	3/8	$21 / 2$	1/4	$25 / 8$	3/8	1/4	1/2	5/16	9/16	$71 / 2$	3/4	$73 / 8$	5/8
90 PSI	$31 / 4$	1	$31 / 4$	1	3 $5 / 8$	$13 / 8$	$\begin{array}{r} 3 \\ 11 / 16 \\ \hline \end{array}$	7/16	4 1/8	$17 / 8$	4	$13 / 4$	8 $9 / 16$	$\begin{array}{r} 1 \\ 13 / 16 \end{array}$	8 $5 / 8$	$17 / 8$	$83 / 4$	2	$81 / 2$	$13 / 4$
SPRING BRAKES					$\begin{array}{r} 3 \\ \hline 1 / 8 \end{array}$	1/2	$31 / 4$	5/8					8	1 1/4	$\begin{array}{r} 8 \\ 3 / 16 \end{array}$	$\begin{array}{r} 1 \\ 7 / 16 \end{array}$	$83 / 8$	$15 / 8$	$81 / 8$	$13 / 8$
COMMENTS:	Pre 10	Fsile	Trailer														DATE:		5/31	2012
AXLE POSITION	1L		1R		2 L		2R		3L		3R		4L		4R		5L		5R	
BSAP	$21 / 4$		$21 / 4$		2 $1 / 4$		$21 / 4$		$21 / 4$		$21 / 4$		$\begin{array}{r}6 \\ 3 / 4 \\ \hline\end{array}$		6 $3 / 4$		$63 / 4$		$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	2 $1 / 2$	1/4	$21 / 2$	1/4	$24 / 7$	5/16	$21 / 2$	1/4	7 $1 / 4$	1/2	7 $5 / 16$	9/16	$71 / 2$	3/4	$73 / 8$	5/8
90 PSI	$31 / 4$	1	$31 / 4$	1	3 $5 / 8$	$13 / 8$	$35 / 8$	138	$33 / 4$	$11 / 2$	$\begin{array}{r} 3 \\ 11 / 16 \end{array}$	1 $7 / 16$	8 $7 / 16$	r $\begin{array}{r}1 \\ 11 / 16\end{array}$	8 $5 / 8$	17/8	$83 / 4$	2	$81 / 2$	$13 / 4$
SPRING BRAKES					$\begin{array}{r} 13 \\ 1 / 8 \end{array}$	5/8	$31 / 4$	3/4					8	1 1/4	8 $3 / 16$	1 $7 / 16$	$83 / 8$	$15 / 8$	$85 / 8$	17/8
COMMENTS:	Pre 11	Full F	unction														DATE:		5/31	2012
AXLEPOSITION	1L		1R		2L		2R		3L		3R		4L		4R		5L		5R	
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		$21 / 4$		$\begin{array}{r} 6 \\ 3 / 4 \end{array}$		$\begin{array}{r}6 \\ 3 / 4 \\ \hline\end{array}$		$63 / 4$		$63 / 4$	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	2 $5 / 8$	3/8	$23 / 4$	1/2	$23 / 4$	1/2	$23 / 4$	1/2	7 $1 / 4$	1/2	2 $3 / 8$	-4 $3 / 8$	$71 / 2$	3/4	$73 / 8$	5/8
90 PSI	$31 / 4$	1	$31 / 4$	1	4 $1 / 8$	$17 / 8$	$41 / 8$	$17 / 8$	4 1/6	- 1	4 $1 / 16$	r $\begin{array}{r}1 \\ 13 / 16\end{array}$	8 $1 / 2$	$13 / 4$	8 $5 / 8$	$17 / 8$	8 3/4	2	$85 / 8$	$17 / 8$
SPRING BRAKES					$\begin{array}{r} 3 \\ 9 / 16 \end{array}$	15/16	$\begin{array}{r} 3 \\ 9 / 16 \end{array}$	13/16					8	1 1/4	8 $1 / 4$	$11 / 2$	$81 / 4$	1 1/2	$81 / 8$	$13 / 8$
	Pre 116k Failed Drive																	DATE:	6/2/2012	
COMMENTS:																				

AXLE POSITION	1L		1R		2L	2R			3L		3R		4L		4R		5L	5R		
BSAP	$21 / 4$		$21 / 4$		$\begin{array}{r} 2 \\ 1 / 4 \end{array}$		$21 / 4$		$21 / 4$		$21 / 4$		6 $3 / 4$		6 $3 / 4$		6 3/4		6 3/4	
FREE STROKE	$21 / 2$	1/4	$21 / 2$	1/4	$\begin{array}{r} 2 \\ 1 / 2 \end{array}$	1/4	$25 / 8$	3/8	25/8	3/8	$25 / 8$	3/8	7 $1 / 4$	1/2	7 $3 / 8$	5/8	7 1/2	3/4	73.8	5/8
90 PSI	$31 / 4$	0	$31 / 4$	1	4	$13 / 4$	4	$13 / 4$	4	$13 / 4$	4	$13 / 4$	8 $9 / 16$	1 $13 / 16$	8 $5 / 8$	$17 / 8$	$83 / 4$	2	$81 / 2$	$13 / 4$
SPRING BRAKE S					$\begin{array}{r} 3 \\ 1 / 2 \\ \hline \end{array}$	1	$31 / 2$	7/8					8	$11 / 4$	$\begin{array}{r} 8 \\ 3 / 16 \end{array}$	$\begin{array}{r} 1 \\ 7 / 16 \end{array}$	$83 / 8$	$15 / 8$	$81 / 8$	$13 / 8$

COMMENTS: Pre 116 k Failed Trailer

DATE:
6/2/2012

AXLE POSITION
BSAP
FREE STROKE 90 PSI

SPRING BRAKES

COMMENTS:
Post 116 k Failed Trailer
DATE:
6/4/2012
[This page intentionally left blank.]

APPENDIX C: PERFORMANCE-BASED BRAKE TESTER RESULTS

Table 20. PBBT scores-fully functioning brakes, before test set.

Load Condition	Measure	Axle 1 Left	Axle 1 Right	Axle 2 Left	Axle 2 Right	Axle 3 Left	Axle 3 Right	Axle 4 Left	Axle 4 Right	Axle 5 Left	Axle 5 Right			
Control Trailer	Brake Force (lb)	4,658	4,114	4,078	5,733	4,141	5,305	-	-	-	-			
Total												$	$	$\mathbf{2 8 , 0 2 9}$
:---														
Weight (lb)														
Efficiency														

Table 21. PBBT scores-fully functioning brakes, after test set.

Load Condition	Measure	Axle 1 Right	Axle 1 Left	Axle 2 Right	Axle 2 Left	Axle 3 Right	Axle 3 Left	Axle 4 Right	Axle 4 Left	Axle 5 Right	Axle 5 Left	Total
Control Trailer	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 4,334 \\ 6,878 \\ 63.0 \% \end{array}$	$\begin{array}{r} \hline 4,321 \\ 6,217 \\ 69.5 \% \end{array}$	$\begin{array}{r} \hline 3,844 \\ 9,656 \\ 39.8 \% \end{array}$	$\begin{array}{r} \hline 4,285 \\ 9,039 \\ 47.4 \% \end{array}$	$\begin{array}{r} \hline 4,096 \\ 9,304 \\ 44.0 \% \end{array}$	$\begin{array}{r} \hline 5,283 \\ 8,422 \\ 62.7 \% \end{array}$	-	-	-	-	26,163 49,516 52.8\%
60,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,072 \\ 6,614 \\ 76.7 \% \end{array}$	$\begin{array}{r} 4,896 \\ 5,732 \\ 85.4 \% \end{array}$	$\begin{array}{r} \hline 2,608 \\ 5,908 \\ 44.1 \% \end{array}$	$\begin{array}{r} 4,645 \\ 5,820 \\ 79.8 \% \end{array}$	$\begin{array}{r} \hline 2,747 \\ 5,908 \\ 46.5 \% \end{array}$	$\begin{array}{r} 4,384 \\ 5,115 \\ 85.7 \% \end{array}$	$\begin{array}{r} 2,945 \\ 4,409 \\ 66.8 \% \end{array}$	$\begin{array}{r} 3,183 \\ 4,012 \\ 79.3 \% \end{array}$	$\begin{array}{r} 3,984 \\ 4,894 \\ 81.4 \% \end{array}$	$\begin{array}{r} 4,276 \\ 4,806 \\ 89.0 \% \end{array}$	$\begin{aligned} & 38,740 \\ & 53,218 \\ & 72.8 \% \end{aligned}$
$\begin{aligned} & 80,000 \mathrm{lb} \\ & \text { Balanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,431 \\ 6,878 \\ 79.0 \% \end{array}$	$\begin{array}{r} 5,036 \\ 6,129 \\ 82.2 \% \end{array}$	$\begin{array}{r} 3,601 \\ 8,289 \\ 43.4 \% \end{array}$	$\begin{array}{r} 5,229 \\ 7,760 \\ 67.4 \% \end{array}$	$\begin{array}{r} 4,096 \\ 8,245 \\ 49.7 \% \end{array}$	$\begin{array}{r} 3,673 \\ 6,967 \\ 52.7 \% \end{array}$	$\begin{array}{r} 5,400 \\ 7,937 \\ 68.0 \% \end{array}$	$\begin{array}{r} 5,045 \\ 7,319 \\ 68.9 \% \end{array}$	$\begin{array}{r} 6,142 \\ 7,937 \\ 77.4 \% \end{array}$	$\begin{array}{r} 6,232 \\ 7,584 \\ 82.2 \% \end{array}$	$\begin{aligned} & 49,885 \\ & 75,045 \\ & 66.5 \% \end{aligned}$
80,000 lb Unbalanced Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,045 \\ 6,967 \\ 72.4 \% \end{array}$	$\begin{array}{r} \hline 4,348 \\ 6,041 \\ 72.0 \% \end{array}$	$\begin{array}{r} \hline 4,321 \\ 9,744 \\ 44.3 \% \end{array}$	$\begin{array}{r} \hline 5,764 \\ 9,348 \\ 61.7 \% \end{array}$	$\begin{array}{r} \hline 4,253 \\ 9,568 \\ 44.5 \% \end{array}$	$\begin{array}{r} 4,303 \\ 8,245 \\ 52.2 \% \end{array}$	$\begin{array}{r} \hline 4,110 \\ 6,173 \\ 66.6 \% \end{array}$	$\begin{array}{r} \hline 4,172 \\ 5,556 \\ 75.1 \% \end{array}$	$\begin{array}{r} \hline 5,135 \\ 6,129 \\ 83.8 \% \end{array}$	$\begin{array}{r} \hline 5,220 \\ 5,952 \\ 87.7 \% \end{array}$	$\begin{aligned} & \hline 46,671 \\ & 73,723 \\ & 63.3 \% \end{aligned}$
91,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,004 \\ 6,614 \\ 75.7 \% \end{array}$	$\begin{array}{r} 5,022 \\ 6,041 \\ 83.1 \% \end{array}$	$\begin{array}{r} 5,697 \\ 9,965 \\ 57.2 \% \end{array}$	$\begin{array}{r} 4,123 \\ 8,863 \\ 46.5 \% \end{array}$	$\begin{array}{r} 4,505 \\ 9,259 \\ 48.7 \% \end{array}$	$\begin{array}{r} \hline 5,085 \\ 8,069 \\ 63.0 \% \end{array}$	$\begin{array}{r} 5,517 \\ 8,951 \\ 61.6 \% \end{array}$	$\begin{array}{r} 6,079 \\ 8,157 \\ 74.5 \% \end{array}$	$\begin{array}{r} 6,704 \\ 8,995 \\ 74.5 \% \end{array}$	$\begin{array}{r} 6,987 \\ 8,641 \\ 80.9 \% \end{array}$	$\begin{aligned} & 54,723 \\ & 83,555 \\ & 65.5 \% \end{aligned}$
97,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 4,761 \\ 6,526 \\ 73.0 \% \end{array}$	$\begin{array}{r} \hline 5,171 \\ 5,908 \\ 87.5 \% \end{array}$	$\begin{array}{r} \hline 3,651 \\ 8,466 \\ 43.1 \% \end{array}$	$\begin{array}{r} 5,422 \\ 7,893 \\ 68.7 \% \end{array}$	$\begin{array}{r} \hline 3,799 \\ 8,378 \\ 45.3 \% \end{array}$	$\begin{array}{r} 4,950 \\ 7,099 \\ 69.7 \% \end{array}$	$\begin{array}{r} 6,731 \\ 11,905 \\ 56.5 \% \end{array}$	$\begin{array}{r} 7,401 \\ 10,979 \\ 67.4 \% \end{array}$	$\begin{array}{r} 6,965 \\ 12,478 \\ 55.8 \% \end{array}$	$\begin{array}{r} 7,055 \\ 11,552 \\ 61.1 \% \end{array}$	$\begin{aligned} & 55,906 \\ & 91,184 \\ & 61.3 \% \end{aligned}$
$106,000 \mathrm{lb}$ Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,688 \\ 6,967 \\ 81.6 \% \end{array}$	$\begin{array}{r} \hline 5,427 \\ 6,526 \\ 83.2 \% \end{array}$	$\begin{array}{r} 5,301 \\ 11,817 \\ 44.9 \% \end{array}$	$\begin{array}{r} 5,135 \\ 10,714 \\ 47.9 \% \end{array}$	$\begin{array}{r} 5,234 \\ 11,023 \\ 47.5 \% \end{array}$	$\begin{array}{r} \hline 5,971 \\ 9,700 \\ 61.6 \% \end{array}$	$\begin{array}{r} 6,938 \\ 11,067 \\ 62.7 \% \end{array}$	$\begin{array}{r} 7,284 \\ 10,582 \\ 68.8 \% \end{array}$	$\begin{array}{r} 7,104 \\ 10,979 \\ 64.7 \% \end{array}$	$\begin{array}{r} 6,965 \\ 10,803 \\ 64.5 \% \end{array}$	$\begin{array}{r} 61,047 \\ 100,178 \\ 60.9 \% \end{array}$
$116,000 \mathrm{lb}$ Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,841 \\ 7,055 \\ 82.8 \% \end{array}$	$\begin{array}{r} \hline 5,256 \\ 6,129 \\ 85.8 \% \end{array}$	$\begin{array}{r} \hline 7,117 \\ 12,610 \\ 56.4 \% \end{array}$	$\begin{array}{r} \hline 5,521 \\ 11,773 \\ 46.9 \% \end{array}$	$\begin{array}{r} \hline 6,101 \\ 12,037 \\ 50.7 \% \end{array}$	$\begin{array}{r} \hline 5,908 \\ 10,538 \\ 56.1 \% \end{array}$	$\begin{array}{r} \hline 6,758 \\ 12,655 \\ 53.4 \% \end{array}$	$\begin{array}{r} \hline 6,920 \\ 11,685 \\ 59.2 \% \end{array}$	$\begin{array}{r} \hline 6,920 \\ 12,787 \\ 54.1 \% \end{array}$	$\begin{array}{r} \hline 7,230 \\ 12,037 \\ 60.1 \% \end{array}$	$\begin{array}{r} 63,572 \\ 109,306 \\ 58.2 \% \end{array}$

Table 22. PBBT scores---disabled front drive axle brakes, before test set.

Load Condition	Measure	Axle 1 Left	Axle 1 Right	Axle 2 Left	Axle 2 Right	Axle 3 Left	Axle 3 Right	Axle 4 Left	Axle 4 Right	Axle 5 Left	Axle 5 Right	Total
Control Trailer	Brake Force (lb) Weight (lb) Efficiency	- - -	-	-	-	-	-	-	-	-	-	-
60,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,103 \\ 6,570 \\ 77.7 \% \end{array}$	$\begin{array}{r} 4,743 \\ 5,952 \\ 79.7 \% \end{array}$	$\begin{array}{r} 0 \\ 6,047 \\ 0.0 \% \end{array}$	$\begin{array}{r} 4 \\ 5,864 \\ 0.1 \% \end{array}$	$\begin{array}{r} 2,878 \\ 5,997 \\ 48.0 \% \end{array}$	$\begin{array}{r} 3,862 \\ 5,335 \\ 72.4 \% \end{array}$	$\begin{array}{r} 3,075 \\ 4,630 \\ 66.4 \% \end{array}$	$\begin{array}{r} 3,084 \\ 3,836 \\ 80.4 \% \end{array}$	$\begin{array}{r} 4,002 \\ 5,027 \\ 79.6 \% \end{array}$	$\begin{array}{r} 4,060 \\ 4,806 \\ 84.5 \% \end{array}$	$\begin{aligned} & 30,811 \\ & 54,064 \\ & 57.0 \% \end{aligned}$
$\begin{aligned} & 80,000 \mathrm{lb} \\ & \text { Balanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,297 \\ 6,702 \\ 79.0 \% \end{array}$	$\begin{array}{r} 4,276 \\ 5,732 \\ 74.6 \% \end{array}$	$\begin{array}{r} 9 \\ 8,378 \\ 0.1 \% \end{array}$	$\begin{array}{r} 18 \\ 7,672 \\ 0.2 \% \end{array}$	$\begin{array}{r} 3,849 \\ 8,025 \\ 48.0 \% \end{array}$	$\begin{array}{r} 4,699 \\ 7,055 \\ 66.6 \% \end{array}$	$\begin{array}{r} 5,472 \\ 7,716 \\ 70.9 \% \end{array}$	$\begin{array}{r} 5,081 \\ 7,143 \\ 71.1 \% \end{array}$	$\begin{array}{r} 6,007 \\ 7,981 \\ 75.3 \% \end{array}$	$\begin{array}{r} 6,137 \\ 7,496 \\ 81.9 \% \end{array}$	$\begin{aligned} & 40,845 \\ & 73,900 \\ & 55.3 \% \end{aligned}$
$\begin{aligned} & \text { 80,000 lb } \\ & \text { Unbalanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,328 \\ 6,834 \\ 78.0 \% \end{array}$	$\begin{array}{r} \hline 5,198 \\ 6,129 \\ 84.8 \% \end{array}$	$\begin{array}{r} 36 \\ 9,789 \\ 0.4 \% \end{array}$	$\begin{array}{r} 18 \\ 9,127 \\ 0.2 \% \end{array}$	$\begin{array}{r} \hline 4,321 \\ 9,348 \\ 46.2 \% \end{array}$	$\begin{array}{r} \hline 5,948 \\ 8,289 \\ 71.8 \% \end{array}$	$\begin{array}{r} \hline 3,772 \\ 6,129 \\ 61.5 \% \end{array}$	$\begin{array}{r} \hline 4,550 \\ 5,556 \\ 81.9 \% \end{array}$	$\begin{array}{r} 4,806 \\ 6,261 \\ 76.8 \% \end{array}$	$\begin{array}{r} \hline 5,400 \\ 5,864 \\ 92.1 \% \end{array}$	$\begin{aligned} & \hline 39,377 \\ & 73,326 \\ & 53.7 \% \end{aligned}$
91,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,112 \\ 6,570 \\ 77.8 \% \end{array}$	$\begin{array}{r} 5,081 \\ 5,997 \\ 84.7 \% \end{array}$	$\begin{array}{r} 9 \\ 9,436 \\ 0.1 \% \end{array}$	$\begin{array}{r} 18 \\ 8,995 \\ 0.2 \% \end{array}$	$\begin{array}{r} 4,379 \\ 9,436 \\ 46.4 \% \end{array}$	$\begin{array}{r} 5,899 \\ 8,025 \\ 73.5 \% \end{array}$	$\begin{array}{r} 5,517 \\ 9,039 \\ 61.0 \% \end{array}$	$\begin{array}{r} 6,434 \\ 8,333 \\ 77.2 \% \end{array}$	$\begin{array}{r} 6,771 \\ 9,215 \\ 73.5 \% \end{array}$	$\begin{array}{r} 7,135 \\ 8,863 \\ 80.5 \% \end{array}$	$\begin{aligned} & 46,355 \\ & 83,909 \\ & 55.2 \% \end{aligned}$
97,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,973 \\ 6,702 \\ 74.2 \% \end{array}$	$\begin{array}{r} 4,910 \\ 5,776 \\ 85.0 \% \end{array}$	$\begin{array}{r} 9 \\ 8,466 \\ 0.1 \% \end{array}$	$\begin{array}{r} 22 \\ 7,937 \\ 0.3 \% \end{array}$	$\begin{array}{r} 3,997 \\ 8,554 \\ 46.7 \% \end{array}$	$\begin{array}{r} 4,797 \\ 7,187 \\ 66.7 \% \end{array}$	$\begin{array}{r} 7,014 \\ 11,817 \\ 59.4 \% \end{array}$	$\begin{array}{r} 7,522 \\ 10,803 \\ 69.6 \% \end{array}$	$\begin{array}{r} \hline 6,362 \\ 12,478 \\ 51.0 \% \end{array}$	$\begin{array}{r} 6,623 \\ 11,508 \\ 57.6 \% \end{array}$	$\begin{aligned} & 46,229 \\ & 91,228 \\ & 50.7 \% \end{aligned}$
106,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,283 \\ 6,967 \\ 75.8 \% \end{array}$	$\begin{array}{r} 5,153 \\ 6,570 \\ 78.4 \% \end{array}$	$\begin{array}{r} 22 \\ 11,729 \\ 0.2 \% \end{array}$	$\begin{array}{r} 22 \\ 10,626 \\ 0.2 \% \end{array}$	$\begin{array}{r} 5,436 \\ 11,420 \\ 47.6 \% \end{array}$	$\begin{array}{r} \hline 5,998 \\ 9,700 \\ 61.8 \% \end{array}$	6,618 10,979 60.3%	$\begin{array}{r} 6,915 \\ 10,318 \\ 67.0 \% \end{array}$	$\begin{array}{r} 6,893 \\ 11,111 \\ 62.0 \% \end{array}$	$\begin{array}{r} \hline 7,158 \\ 10,538 \\ 67.9 \% \end{array}$	$\begin{aligned} & 49,498 \\ & 99,958 \\ & 49.5 \% \end{aligned}$
116,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,661 \\ 6,746 \\ 83.9 \% \end{array}$	$\begin{array}{r} \hline 5,530 \\ 6,437 \\ 85.9 \% \end{array}$	$\begin{array}{r} \hline 4 \\ 12,478 \\ 0.0 \% \end{array}$	$\begin{array}{r} 22 \\ 11,552 \\ 0.2 \% \end{array}$	$\begin{array}{r} \hline 7,284 \\ 12,037 \\ 60.5 \% \end{array}$	$\begin{array}{r} \hline 5,076 \\ 10,582 \\ 48.0 \% \end{array}$	$\begin{array}{r} \hline 7,365 \\ 12,699 \\ 58.0 \% \end{array}$	$\begin{array}{r} \hline 7,405 \\ 11,685 \\ 63.4 \% \end{array}$	$\begin{array}{r} \hline 6,884 \\ 12,919 \\ 53.3 \% \end{array}$	$\begin{array}{r} \hline 7,347 \\ 11,993 \\ 61.3 \% \end{array}$	$\begin{array}{r} \hline 52,578 \\ 109,128 \\ 48.2 \% \end{array}$

Table 23. PBBT scores-disabled front drive axle brakes, after test set.

Load Condition	Measure	Axle 1 Left	Axle 1 Right	Axle 2 Left	Axle 2 Right	Axle 3 Left	Axle 3 Right	Axle 4 Left	Axle 4 Right	Axle 5 Left	Axle 5 Right	Total
Control Trailer	Brake Force (lb) Weight (lb) Efficiency	-	-	-	-	-	-	-	-	-	-	-
60,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,699 \\ 6,570 \\ 71.5 \% \end{array}$	$\begin{array}{r} 4,096 \\ 5,688 \\ 72.0 \% \end{array}$	$\begin{array}{r} 0 \\ 6,614 \\ 0.0 \% \end{array}$	$\begin{array}{r} 9 \\ 5,688 \\ 0.2 \% \end{array}$	$\begin{array}{r} 3,039 \\ 6,085 \\ 49.9 \% \end{array}$	$\begin{array}{r} 3,471 \\ 5,291 \\ 65.6 \% \end{array}$	$\begin{array}{r} 2,958 \\ 4,321 \\ 68.5 \% \end{array}$	$\begin{array}{r} 3,404 \\ 3,748 \\ 90.8 \% \end{array}$	$\begin{array}{r} 3,939 \\ 4,938 \\ 79.8 \% \end{array}$	$\begin{array}{r} 4,555 \\ 4,850 \\ 93.9 \% \end{array}$	$\begin{aligned} & 30,170 \\ & 53,793 \\ & 56.1 \% \end{aligned}$
$\begin{aligned} & 80,000 \mathrm{lb} \\ & \text { Balanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,332 \\ 6,349 \\ 84.0 \% \end{array}$	$\begin{array}{r} 5,099 \\ 6,217 \\ 82.0 \% \end{array}$	$\begin{array}{r} 4 \\ 8,510 \\ 0.0 \% \end{array}$	$\begin{array}{r} 13 \\ 7,628 \\ 0.2 \% \end{array}$	$\begin{array}{r} 4,932 \\ 8,025 \\ 61.5 \% \end{array}$	$\begin{array}{r} 3,565 \\ 7,011 \\ 50.8 \% \end{array}$	$\begin{array}{r} 5,647 \\ 7,760 \\ 72.8 \% \end{array}$	$\begin{array}{r} 5,099 \\ 7,231 \\ 70.5 \% \end{array}$	$\begin{array}{r} 6,124 \\ 7,937 \\ 77.2 \% \end{array}$	$\begin{array}{r} 5,975 \\ 7,452 \\ 80.2 \% \end{array}$	$\begin{aligned} & 41,790 \\ & 74,120 \\ & 56.4 \% \end{aligned}$
$\begin{aligned} & \text { 80,000 lb } \\ & \text { Unbalanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,584 \\ 7,055 \\ 79.1 \% \end{array}$	$\begin{array}{r} \hline 5,036 \\ 6,129 \\ 82.2 \% \end{array}$	$\begin{array}{r} 31 \\ 9,700 \\ 0.3 \% \end{array}$	$\begin{array}{r} 22 \\ 8,951 \\ 0.2 \% \end{array}$	$\begin{array}{r} 4,492 \\ 9,436 \\ 47.6 \% \end{array}$	$\begin{array}{r} 5,733 \\ 7,893 \\ 72.6 \% \end{array}$	$\begin{array}{r} \hline 4,132 \\ 6,173 \\ 66.9 \% \end{array}$	$\begin{array}{r} \hline 4,101 \\ 5,688 \\ 72.1 \% \end{array}$	$\begin{array}{r} \hline 4,887 \\ 6,041 \\ 80.9 \% \end{array}$	$\begin{array}{r} \hline 5,018 \\ 5,776 \\ 86.9 \% \end{array}$	$\begin{aligned} & 39,036 \\ & 72,842 \\ & 53.6 \% \end{aligned}$
91,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,905 \\ 6,570 \\ 74.7 \% \end{array}$	$\begin{array}{r} 4,613 \\ 6,129 \\ 75.3 \% \end{array}$	$\begin{array}{r} 9 \\ 9,965 \\ 0.1 \% \end{array}$	$\begin{array}{r} 13 \\ 8,951 \\ 0.1 \% \end{array}$	$\begin{array}{r} 4,406 \\ 9,171 \\ 48.0 \% \end{array}$	$\begin{array}{r} 5,625 \\ 8,201 \\ 68.6 \% \end{array}$	$\begin{array}{r} 5,728 \\ 8,863 \\ 64.6 \% \end{array}$	$\begin{array}{r} 7,180 \\ 8,598 \\ 83.5 \% \end{array}$	$\begin{array}{r} 6,668 \\ 8,907 \\ 74.9 \% \end{array}$	$\begin{array}{r} 7,518 \\ 8,730 \\ 86.1 \% \end{array}$	$\begin{aligned} & 46,665 \\ & 84,085 \\ & 55.5 \% \end{aligned}$
97,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,238 \\ 6,658 \\ 78.7 \% \end{array}$	$\begin{array}{r} 4,685 \\ 5,908 \\ 79.3 \% \end{array}$	$\begin{array}{r} 4 \\ 8,818 \\ 0.0 \% \end{array}$	$\begin{array}{r} 13 \\ 7,716 \\ 0.2 \% \end{array}$	$\begin{array}{r} 5,054 \\ 8,642 \\ 58.5 \% \end{array}$	$\begin{array}{r} 3,624 \\ 7,143 \\ 50.7 \% \end{array}$	7,230 11,905 60.7\%	$\begin{array}{r} 7,140 \\ 10,714 \\ 66.6 \% \end{array}$	$\begin{array}{r} \hline 6,911 \\ 12,390 \\ 55.8 \% \end{array}$	$\begin{array}{r} 7,131 \\ 11,155 \\ 63.9 \% \end{array}$	$\begin{aligned} & 47,030 \\ & 91,049 \\ & 51.7 \% \end{aligned}$
106,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,463 \\ 6,923 \\ 78.9 \% \end{array}$	$\begin{array}{r} 5,827 \\ 6,526 \\ 89.3 \% \end{array}$	$\begin{array}{r} 9 \\ 11,155 \\ 0.1 \% \end{array}$	$\begin{array}{r} 13 \\ 10,847 \\ 0.1 \% \end{array}$	$\begin{array}{r} 5,207 \\ 10,847 \\ 48.0 \% \end{array}$	$\begin{array}{r} 6,488 \\ 9,744 \\ 66.6 \% \end{array}$	6,753 10,979 61.5%	$\begin{array}{r} 7,032 \\ 10,229 \\ 68.7 \% \end{array}$	$\begin{array}{r} \hline 6,794 \\ 11,376 \\ 59.7 \% \end{array}$	$\begin{array}{r} 6,596 \\ 10,670 \\ 61.8 \% \end{array}$	$\begin{aligned} & 50,182 \\ & 99,296 \\ & 50.5 \% \end{aligned}$
116,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,769 \\ 7,011 \\ 82.3 \% \end{array}$	$\begin{array}{r} 4,937 \\ 6,261 \\ 78.9 \% \end{array}$	$\begin{array}{r} 13 \\ 12,522 \\ 0.1 \% \end{array}$	$\begin{array}{r} 13 \\ 11,640 \\ 0.1 \% \end{array}$	$\begin{array}{r} \hline 6,151 \\ 12,316 \\ 49.9 \% \end{array}$	$\begin{array}{r} \hline 6,007 \\ 10,494 \\ 57.2 \% \end{array}$	$\begin{array}{r} \hline 6,659 \\ 12,699 \\ 52.4 \% \end{array}$	$\begin{array}{r} \hline 7,063 \\ 11,332 \\ 62.3 \% \end{array}$	$\begin{array}{r} \hline 6,843 \\ 12,787 \\ 53.5 \% \end{array}$	$\begin{array}{r} \hline 7,149 \\ 11,993 \\ 59.6 \% \end{array}$	$\begin{array}{r} \hline 50,604 \\ 109,055 \\ 46.4 \% \end{array}$

Table 24. PBBT scores-disabled rear trailer axle brakes, before test set.

Load Condition	Measure	Axle 1 Left	Axle 1 Right	Axle 2 Left	Axle 2 Right	Axle 3 Left	Axle 3 Right	Axle 4 Left	Axle 4 Right	Axle 5 Left	Axle 5 Right	Total
Control Trailer	Brake Force (lb) Weight (lb) Efficiency	-	-	-	-	-	-	-	-	-	-	-
60,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,734 \\ 6,570 \\ 72.1 \% \end{array}$	$\begin{array}{r} 3,898 \\ 5,688 \\ 68.5 \% \end{array}$	$\begin{array}{r} 4,253 \\ 6,526 \\ 65.2 \% \end{array}$	$\begin{array}{r} 2,432 \\ 5,776 \\ 42.1 \% \end{array}$	$\begin{array}{r} 3,035 \\ 6,129 \\ 49.5 \% \end{array}$	$\begin{array}{r} 3,516 \\ 5,423 \\ 64.8 \% \end{array}$	$\begin{array}{r} 2,707 \\ 4,233 \\ 63.9 \% \end{array}$	$\begin{array}{r} 3,228 \\ 3,836 \\ 84.2 \% \end{array}$	$\begin{array}{r} 4 \\ 5,159 \\ 0.1 \% \end{array}$	$\begin{array}{r} 9 \\ 5,029 \\ 0.2 \% \end{array}$	$\begin{aligned} & 27,816 \\ & 54,369 \\ & 51.2 \% \end{aligned}$
$\begin{aligned} & \text { 80,000 lb } \\ & \text { Balanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,793 \\ 6,129 \\ 78.2 \% \end{array}$	$\begin{array}{r} 4,815 \\ 5,864 \\ 82.1 \% \end{array}$	$\begin{array}{r} 3,570 \\ 8,289 \\ 43.1 \% \end{array}$	$\begin{array}{r} 5,377 \\ 7,628 \\ 70.5 \% \end{array}$	$\begin{array}{r} 3,993 \\ 8,069 \\ 49.5 \% \end{array}$	$\begin{array}{r} \hline 4,406 \\ 7,011 \\ 62.8 \% \end{array}$	$\begin{array}{r} 4,577 \\ 7,716 \\ 59.3 \% \end{array}$	$\begin{array}{r} 4,402 \\ 7,011 \\ 62.8 \% \end{array}$	$\begin{array}{r} 9 \\ 7,716 \\ 0.1 \% \end{array}$	$\begin{array}{r} 13 \\ 7,231 \\ 0.2 \% \end{array}$	$\begin{aligned} & 35,955 \\ & 72,664 \\ & 49.5 \% \end{aligned}$
$\begin{aligned} & \text { 80,000 lb } \\ & \text { Unbalanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,157 \\ 6,702 \\ 76.9 \% \end{array}$	$\begin{array}{r} \hline 4,833 \\ 6,305 \\ 76.7 \% \end{array}$	$\begin{array}{r} \hline 4,074 \\ 9,700 \\ 42.0 \% \end{array}$	$\begin{array}{r} \hline 6,695 \\ 9,039 \\ 74.1 \% \end{array}$	$\begin{array}{r} 4,357 \\ 9,392 \\ 46.4 \% \end{array}$	$\begin{array}{r} \hline 5,935 \\ 8,245 \\ 72.0 \% \end{array}$	$\begin{array}{r} \hline 3,727 \\ 6,129 \\ 60.8 \% \end{array}$	$\begin{array}{r} \hline 4,020 \\ 5,423 \\ 74.1 \% \end{array}$	$\begin{array}{r} 4 \\ 6,173 \\ 0.1 \% \end{array}$	$\begin{array}{r} 9 \\ 5,776 \\ 0.2 \% \end{array}$	$\begin{aligned} & \hline 38,811 \\ & 72,884 \\ & 53.3 \% \end{aligned}$
91,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,896 \\ 6,702 \\ 73.1 \% \end{array}$	$\begin{array}{r} 4,213 \\ 6,041 \\ 69.7 \% \end{array}$	$\begin{array}{r} 4,213 \\ 9,833 \\ 42.8 \% \end{array}$	$\begin{array}{r} 6,524 \\ 8,774 \\ 74.4 \% \end{array}$	$\begin{array}{r} 4,303 \\ 9,524 \\ 45.2 \% \end{array}$	$\begin{array}{r} 5,827 \\ 7,937 \\ 73.4 \% \end{array}$	$\begin{array}{r} 5,373 \\ 8,995 \\ 59.7 \% \end{array}$	$\begin{array}{r} 6,843 \\ 8,245 \\ 83.0 \% \end{array}$	$\begin{array}{r} 13 \\ 8,992 \\ 0.1 \% \end{array}$	$\begin{array}{r} 13 \\ 8,510 \\ 0.2 \% \end{array}$	$\begin{aligned} & 42,218 \\ & 83,553 \\ & 50.5 \% \end{aligned}$
97,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,247 \\ 6,967 \\ 75.3 \% \end{array}$	$\begin{array}{r} 5,323 \\ 6,261 \\ 85.0 \% \end{array}$	$\begin{array}{r} 4,690 \\ 11,244 \\ 41.7 \% \end{array}$	$\begin{array}{r} 7,248 \\ 10,803 \\ 67.1 \% \end{array}$	$\begin{array}{r} 5,710 \\ 11,111 \\ 51.4 \% \end{array}$	$\begin{array}{r} 5,072 \\ 9,744 \\ 52.1 \% \end{array}$	$\begin{array}{r} 5,998 \\ 10,935 \\ 54.9 \% \end{array}$	$\begin{array}{r} 7,068 \\ 10,229 \\ 69.1 \% \end{array}$	$\begin{array}{r} 40 \\ 11,067 \\ 0.4 \% \end{array}$	$\begin{array}{r} 18 \\ 10,406 \\ 0.2 \% \end{array}$	$\begin{aligned} & 46,414 \\ & 98,767 \\ & 47.0 \% \end{aligned}$
106,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,238 \\ 6,658 \\ 78.7 \% \end{array}$	$\begin{array}{r} \hline 5,512 \\ 6,393 \\ 86.2 \% \end{array}$	$\begin{array}{r} 5,022 \\ 11,464 \\ 43.8 \% \end{array}$	$\begin{array}{r} \hline 6,731 \\ 10,670 \\ 63.1 \% \end{array}$	$\begin{array}{r} \hline 6,313 \\ 10,935 \\ 57.7 \% \end{array}$	$\begin{array}{r} 5,099 \\ 9,392 \\ 54.3 \% \end{array}$	$\begin{array}{r} 6,771 \\ 11,155 \\ 60.7 \% \end{array}$	$\begin{array}{r} 6,074 \\ 10,009 \\ 60.7 \% \end{array}$	$\begin{array}{r} 9 \\ 11,023 \\ 0.1 \% \end{array}$	$\begin{array}{r} 18 \\ 10,274 \\ 0.2 \% \end{array}$	$\begin{aligned} & \hline 46,787 \\ & 97,973 \\ & 47.8 \% \end{aligned}$
116,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 5,647 \\ 7,011 \\ 80.5 \% \end{array}$	$\begin{array}{r} \hline 4,919 \\ 6,217 \\ 79.1 \% \end{array}$	$\begin{array}{r} \hline 7,365 \\ 12,787 \\ 57.6 \% \end{array}$	$\begin{array}{r} \hline 5,350 \\ 11,376 \\ 47.0 \% \end{array}$	$\begin{array}{r} \hline 6,295 \\ 11,993 \\ 52.5 \% \end{array}$	$\begin{array}{r} \hline 5,926 \\ 10,626 \\ 55.8 \% \end{array}$	$\begin{array}{r} \hline 6,510 \\ 12,655 \\ 51.4 \% \end{array}$	$\begin{array}{r} \hline 6,794 \\ 11,508 \\ 59.0 \% \end{array}$	$\begin{array}{r} 18 \\ 12,699 \\ 0.1 \% \end{array}$	$\begin{array}{r} 18 \\ 11,905 \\ 0.2 \% \end{array}$	$\begin{array}{r} \hline 48,842 \\ 108,777 \\ 44.9 \% \end{array}$

No $97,000 \mathrm{lb}$ testing was performed for this brake configuration; two sets of PBBTs were performed for the 106k loading condition.

Table 25. PBBT scores-disabled rear trailer axle brakes, after test set.

Load Condition	Measure	Axle 1 Left	Axle 1 Right	Axle 2 Left	Axle 2 Right	Axle 3 Left	Axle 3 Right	Axle 4 Left	Axle 4 Right	Axle 5 Left	Axle 5 Right	Total
Control Trailer	Brake Force (lb) Weight (lb) Efficiency	-	-	-	-	-	-	-	-	-	-	-
60,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,910 \\ 6,393 \\ 76.8 \% \end{array}$	$\begin{array}{r} 4,145 \\ 5,688 \\ 72.9 \% \end{array}$	$\begin{array}{r} 2,693 \\ 6,041 \\ 44.6 \% \end{array}$	$\begin{array}{r} 3,979 \\ 5,776 \\ 68.9 \% \end{array}$	$\begin{array}{r} 2,828 \\ 5,908 \\ 47.9 \% \end{array}$	$\begin{array}{r} 3,637 \\ 5,247 \\ 69.3 \% \end{array}$	$\begin{array}{r} 2,887 \\ 4,674 \\ 61.8 \% \end{array}$	$\begin{array}{r} 3,300 \\ 3,968 \\ 83.2 \% \end{array}$	$\begin{array}{r} 4 \\ 4,762 \\ 0.1 \% \end{array}$	$\begin{array}{r} 9 \\ 4,938 \\ 0.2 \% \end{array}$	$\begin{array}{r} 28,392 \\ 53,395 \\ 53.2 \% \end{array}$
$\begin{aligned} & 80,000 \mathrm{lb} \\ & \text { Balanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 4,609 \\ 6,437 \\ 71.6 \% \end{array}$	$\begin{array}{r} 4,519 \\ 6,217 \\ 72.7 \% \end{array}$	$\begin{array}{r} 5,458 \\ 8,289 \\ 65.8 \% \end{array}$	$\begin{array}{r} 3,489 \\ 7,672 \\ 45.5 \% \end{array}$	$\begin{array}{r} 5,004 \\ 7,981 \\ 62.7 \% \end{array}$	$\begin{array}{r} 3,476 \\ 7,231 \\ 48.1 \% \end{array}$	$\begin{array}{r} 4,842 \\ 7,540 \\ 64.2 \% \end{array}$	$\begin{array}{r} 4,357 \\ 7,231 \\ 60.3 \% \end{array}$	$\begin{array}{r} 0 \\ 7,496 \\ 0.0 \% \end{array}$	$\begin{array}{r} 13 \\ 7,469 \\ 0.2 \% \end{array}$	$\begin{gathered} 35,767 \\ 73,563 \\ 48.6 \% \end{gathered}$
$\begin{aligned} & \hline 80,000 \mathrm{lb} \\ & \text { Unbalanced Load } \end{aligned}$	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 4,874 \\ 6,923 \\ 70.4 \% \end{array}$	$\begin{array}{r} 5,085 \\ 5,997 \\ 84.8 \% \end{array}$	$\begin{array}{r} \hline 4,213 \\ 9,700 \\ 43.4 \% \end{array}$	$\begin{array}{r} 5,868 \\ 9,171 \\ 64.0 \% \end{array}$	$\begin{array}{r} 4,582 \\ 9,567 \\ 47.9 \% \end{array}$	$\begin{array}{r} \hline 5,256 \\ 8,289 \\ 63.4 \% \end{array}$	$\begin{array}{r} \hline 3,574 \\ 5,820 \\ 61.4 \% \end{array}$	$\begin{array}{r} 3,588 \\ 5,247 \\ 68.4 \% \end{array}$	$\begin{array}{r} 4 \\ 6,173 \\ 0.1 \% \end{array}$	$\begin{array}{r} 9 \\ 5,820 \\ 0.2 \% \end{array}$	$\begin{gathered} \hline 37,053 \\ 72,707 \\ 51.0 \% \end{gathered}$
91,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} 4,784 \\ 7,011 \\ 68.2 \% \end{array}$	$\begin{array}{r} 4,690 \\ 5,864 \\ 80.0 \% \end{array}$	$\begin{array}{r} 5,485 \\ 9,789 \\ 56.0 \% \end{array}$	$\begin{array}{r} 4,253 \\ 9,039 \\ 47.1 \% \end{array}$	$\begin{array}{r} 4,465 \\ 9,567 \\ 46.7 \% \end{array}$	$\begin{array}{r} 4,937 \\ 8,157 \\ 60.5 \% \end{array}$	$\begin{array}{r} 5,117 \\ 8,995 \\ 56.9 \% \end{array}$	$\begin{array}{r} 5,454 \\ 8,378 \\ 65.1 \% \end{array}$	$\begin{array}{r} 4 \\ 9,127 \\ 0.0 \% \end{array}$	$\begin{array}{r} 13 \\ 8,642 \\ 0.2 \% \end{array}$	$\begin{gathered} 39,202 \\ 84,569 \\ 46.4 \% \end{gathered}$
97,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,679 \\ 6,834 \\ 83.1 \% \end{array}$	$\begin{array}{r} 4,523 \\ 6,526 \\ 69.3 \% \end{array}$	$\begin{array}{r} 5,081 \\ 11,508 \\ 44.2 \% \end{array}$	$\begin{array}{r} 6,061 \\ 10,759 \\ 56.3 \% \end{array}$	$\begin{array}{r} 2,887 \\ 11,376 \\ 25.4 \% \end{array}$	$\begin{array}{r} 5,193 \\ 9,700 \\ 53.5 \% \end{array}$	$\begin{array}{r} 6,618 \\ 11,288 \\ 58.6 \% \end{array}$	$\begin{array}{r} 5,984 \\ 10,318 \\ 58.0 \% \end{array}$	$\begin{array}{r} 0 \\ 11,420 \\ 0.0 \% \end{array}$	$\begin{array}{r} 18 \\ 10,582 \\ 0.2 \% \end{array}$	$\begin{array}{r} 42,044 \\ 100,311 \\ 41.9 \% \end{array}$
106,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,117 \\ 7,011 \\ 73.0 \% \end{array}$	$\begin{array}{r} 5,031 \\ 6,305 \\ 79.8 \% \end{array}$	$\begin{array}{r} 6,807 \\ 11,685 \\ 58.3 \% \end{array}$	$\begin{array}{r} 4,869 \\ 10,582 \\ 46.0 \% \end{array}$	$\begin{array}{r} 5,476 \\ 11,067 \\ 49.5 \% \end{array}$	$\begin{array}{r} 4,685 \\ 9,568 \\ 49.0 \% \end{array}$	$\begin{array}{r} 6,119 \\ 10,979 \\ 55.7 \% \end{array}$	$\begin{array}{r} 6,038 \\ 10,009 \\ 60.3 \% \end{array}$	$\begin{array}{r} 9 \\ 11,111 \\ 0.1 \% \end{array}$	$\begin{array}{r} 18 \\ 10,494 \\ 0.2 \% \end{array}$	$\begin{gathered} \hline 44,169 \\ 98,811 \\ 44.7 \% \end{gathered}$
116,000 lb Load	Brake Force (lb) Weight (lb) Efficiency	$\begin{array}{r} \hline 5,508 \\ 7,187 \\ 76.6 \% \end{array}$	$\begin{array}{r} 4,856 \\ 6,393 \\ 76.0 \% \end{array}$	$\begin{array}{r} \hline 7,149 \\ 12,610 \\ 56.7 \% \end{array}$	$\begin{array}{r} \hline 5,544 \\ 11,729 \\ 47.3 \% \end{array}$	$\begin{array}{r} \hline 5,899 \\ 11,685 \\ 50.5 \% \end{array}$	$\begin{array}{r} \hline 6,569 \\ 10,406 \\ 63.1 \% \end{array}$	$\begin{array}{r} \hline 6,843 \\ 12,919 \\ 53.0 \% \end{array}$	$\begin{array}{r} \hline 6,915 \\ 11,508 \\ 60.1 \% \end{array}$	$\begin{array}{r} 13 \\ 12,787 \\ 0.1 \% \end{array}$	$\begin{array}{r} 31 \\ 12,037 \\ 0.3 \% \end{array}$	$\begin{array}{r} \hline 49,327 \\ 109,261 \\ 45.1 \% \end{array}$

No $97,000 \mathrm{lb}$ testing was performed for this brake configuration; two sets of PBBTs were performed for the 106k loading condition

REFERENCES

[^0]
[^0]: ${ }^{1}$ http://www.nhtsa.gov/DOT/NHTSA/Rulemaking/Rules/Associated\%20Files/121_Stopping_Distance_FR.pdf (Table II p. 143)
 ${ }^{2}$ Steven J. Shaffer, Amy M. Long, U14: Field Testing and Analysis of Braking Performance of In-Service Trucks, National Transportation Research Center, Inc., 2009.
 ${ }^{3}$ Oscar Franzese, Mary Beth Lascurain, Gary Capps, Medium Truck Duty Cycle Data from Real-World Driving Environments: Project Interim Report, Oak Ridge National Laboratory, 2010.
 ${ }^{4}$ Mary Beth Lascurain, Oscar Franzese, Gary Capps, Real-Time Dynamic Brake Assessment Proof of Concept Final Report, Oak Ridge National Laboratory, 2011.

